Catalog | November 2021

Lexium Cartesian Robots

Portal axes, Linear tables, Cantilever axes,

 Multi axes systems

Discover Lexium

Advanced motion control and robotics
Lexium servo drives, motors, and robotics series are designed for a broad range of motion-centric machines. From single-axis to highperformance multi-axis machines, the Lexium range enables high-speed movements and precise positioning in packaging, material handling, material working, electronics, and food and beverage applications.

Explore our offer

- Lexium Servo Drives and Motors
- Lexium Integrated Servo Drives
- Lexium Robotics
- Lexium Stepper Drives

Quick access to product information

Get technical information about your product

Each commercial reference presented in a catalog contains a hyperlink. Click on it to obtain the technical information of the product:

- Characteristics, Dimensions and drawings, Mounting and clearance, Connections and schemas, Performance curves
- Product image, Instruction sheet, User guide, Product certifications, End of life manual

Find your catalog

$>$ With just 3 clicks, you can access the Industrial Automation and Control catalogs, in both English and French
$>$ Consult digital automation catalogs at Digi-Cat Online

Select your training

[^0]

- Up-to-date catalogs
- Embedded product selectors, 360° pictures
- Optimized search by commercial references

Life Is しJn
Lexium Cartesian Robots

- Portal axes with movable carriage and fixed axis profile
Selection guide page 2
Combinations of drive unit and axes page 4
- Lexium PAS4•B
- Presentation, Applications, Product features page 6
- Description page 7
- Mechanical characteristics page 8
- References pages 9 and 10
- Mounting options for motor and / or gearbox page 11
- Lexium PAD4
- Presentation, Applications, Product features page 12
- Description page 13
- Mechanical characteristics page 14
- References. pages 15 and 16
- Mounting options for motor and / or gearbox page 17
- Lexium PAS4•S
- Presentation, Applications, Product features page 18
- Description, Mechanical characteristics page 19
- References, Mounting options pages 20 and 21
Linear tables with movable carriage and fixed axis profile
Selection guide page 2
Combinations of drive unit and axes page 4
Lexium TAS
- Presentation, Applications, Product features page 22
- Description, Mechanical characteristics page 23
- References. pages 24 and 25
- Cantilever axes with moveable axis profile or end plates and fixed drive block
Selection guide page 2
Combinations of drive unit and axes page 4
- Lexium CAS4 cantilever axes
- Presentation, Applications, Product features page 26
- Description, Mechanical characteristics page 27
- References. pages 28 and 29
- Lexium CAR4 cantilever axes
- Presentation, Applications, Product features page 30
- Description, Mechanical characteristics page 31
References. pages 32 and 33
- Lexium CAS2 telescopic axes
- Presentation, Applications, Product features page 34
- Description, Mechanical characteristics page 35
- References. pages 36 and 37
- Cartesian multi axes systems for 1-, 2-, 3-dimensional positioning solutions
Selection guide page 38
Combinations of drive units and multi axes systems page 40
- Lexium MAXH / MAXS double portal axes- Presentation, Applications, Product featurespage 42
- Mechanical characteristics pages 43 and 44
- References pages 45 and 46
- Mounting page 47
- Lexium MAXP linear positioners
- Presentation, Applications, Product features page 48
- Mechanical characteristics page 48
- References page 49
- Lexium MAXR•2 / MAXR•3 portal robots
- Presentation, Applications page 50
- Mechanical characteristics page 51
- References. pages 52 and 53
- Accessories for Cartesian robots. pages 54 to 57- Product references indexpage 58

Lexium PAS, PAD, TAS, CAS, CAR
Portal axes, Linear tables, Cantilever axes
Combinations of drive units and axes

Drive element	Type	Portal axes					Linear tables			Cantilever and telescopic axes					Planetary gearboxes (1)			
		PAS41B	PAS42B PAS42S PAD42B PAD42E	PAD42P	$\begin{aligned} & \text { PAS43B } \\ & \text { PAS43S } \end{aligned}$	$\begin{array}{\|l} \text { PAS44B } \\ \text { PAS44S } \end{array}$	TAS41S	TAS42S	TAS43S	$\begin{aligned} & \text { CAS41B } \\ & \text { CAR40R } \\ & \text { CR4R41B } \end{aligned}$	CAS42B CAR42B CAR43B CAR44	CAS43B	CAS44B	CAS24B	$\begin{aligned} & \text { PLE401 } \\ & \text { WPLE40 } \end{aligned}$	PLE60/ WPLE60	PLE80/ WPIE80	$\begin{aligned} & \text { PLE1201 } \\ & \text { WPLE120 } \end{aligned}$
Stepper motors	BRS368																	
	BRS397																	
	BRS39B																	
	BRS3AC																	
	BRS3AD																	
Integrated stepper motors	ILS10571																	
	ILS1.572																	
	ILS10.573																	
	ILS10851																	
	ILS10852																	
	ILS10853																	
$\begin{aligned} & \hline \text { Integrated servo } \\ & \text { motors } \\ & \hline \end{aligned}$	ILA10571																	
	ILA10572																	
IntegratedDC-motorswith mountedgearbox	\|LE1066100001																	
	\|LE1066100002																	
	ILE1066100003																	
	ILE1066100004																	
Servo motors	BSH/SH3 0402																	
	BSH/SH3 0551																	
	BSH/SH3 0552																	
	BSH/SH3 0553																	
	BSH/BMH/---/MH3/SH3/LLM 0701																	
	BSH/BMH/BMi/MH3/SH3/LLM 0702																	
	BSH/BMH/BMI/MH3/SH3/LLM 0703																	
	BSH/BMH/---/MH3/SH3/LLM 1001																	
	BSH/BMH/BMi / MH3/SH3/LLM 1002																	
	BSH/BMH/BMI/MH3/SH3/LLM 1003																	
	BSH/--/--/---/SH3/---1004																	
	BSH/BMH/---/MH3/SH3/LLM 1401																	
	BSH/BMH/BMI/MH3/SH3/LLM 1402																	
	BSH/BMH/---/MH3/SH3/--1403																	
	BSH/ /--1/-----/SH3/--. 1404																	
$\begin{aligned} & \text { Servo motors } \\ & \text { BCH2 } \end{aligned}$	BCH2MBA53																	
	BCH2MB013																	
	BCH2LD023																	
	BCH2LD043																	
	BCH2LF043																	
	BCH2HF073																	
	BCH2LF073																	
	BCH2LH103																	
	BCH2MM052																	
	BCH2MM031																	
	BCH2MM102																	
	BCH2HM102																	
	BCH2MM081																	
	BCH2MM061																	
	BCH2MM091																	
	BCH2MM152																	
	BCH2LH203																	
	BCH2MM202																	
	BCH2MR202																	
	BCH2HR202																	
	BCH2MR302																	
	BCH2MR301																	
	BCH2MR352																	
	BCH2MR451																	
$\begin{aligned} & \hline \begin{array}{l} \text { Planetary } \\ \text { gearboxes (1) } \end{array} \end{aligned}$	PLE40/WPLE40																	
	PLE80/WPLE80																	
	PLE120/WPLE120																	
(1) Planetary gearboxes from company Neugart GmbH.			Possible to combine Incompatible															

Lexium PAS4•B portal axes with motor and gearbox mounted

Presentation (1)

Lexium PAS4•B are ready-to-install portal axes with toothed belt drive and one linear guide in four sizes. The axis profile is fixed in place and the load is mounted on the movable carriage. The portal axes are ideally suited for the transport of heavy loads with short and long strokes.

- The very high speeds and accelerations of the Lexium PAS4॰B portal axes enable very short positioning times. The high feed forces with good repeatability are made possible by the steel tension members in the toothed belt. The fabric coating of the toothed belt ensures friction-optimized in and out toothing and thus quiet and smooth movement.
- Two types of guides are available for transmitting the load to the axis profile designed using FEM:
- The recirculating ball bearing guide is particularly suitable for applications with high force and torque loads.
- The roller guide is a cost-optimized guide and is suitable for applications with lower force and torque loads.
■ The individual forces (Fx, Fy, Fz) and torques (Mx, My, Mz) of the Lexium PAS4•B portal axes are designed for a very long service life of $30,000 \mathrm{~km}$ (18,641 miles). If the specified forces and torques are not reached, the service life of the Lexium PAS4•B portal axes increase.
- The T-slots at the bottom and on both sides of the axis profile can be used to fasten the Lexium PAS4•B portal axes. The portal axes are typically used horizontally, but can also be mounted vertically, laterally or overhead. The permissible forces and torques do not change.
- The Lexium PAS4•B portal axes are available with different carriage lengths and with up to three driven carriages. An optionally selectable cover strip is used to protect internal components such as toothed belt and linear guide. Furthermore, an antistatic toothed belt and various sensors can be selected as options.
- The Lexium PAS4•B portal axes can be combined with all motors and / or gearboxes offered by Schneider Electric. The mounting of third-party motors and / or third-party gearboxes is also possible.

Applications

Applications with the following requirements:

- Positioning over long distances: material handling, palletizers, etc.
- Positioning of parts at high speeds: flying shear, optical and measuring applications, labeling, etc.
- High feed forces: hoisting, cutting, machining, etc.

Special product features

- Stroke deliverable per millimeter
- Carriage with threaded holes and centering for reproducible load mounting
- Exchangeable grease nipples, for example to mount an automatic lubrication system
- Motor and gearbox assembly via flexible coupling system on both sides of the end blocks
- Sensors movable in T-slot
- Customized special solutions on request

The PAS42BB with ball guiding is suitable for clean room applications with the following configurations:	
ARAFraunhofer TESTED DEVCE	Standard clean room class PAS42BBM1000A1NA $\bullet \bullet$ R - Clean room class 6 (ISO14644-1) $1.8 \mathrm{~m} / \mathrm{s}(5.91 \mathrm{ft} / \mathrm{s})$ with $10 \mathrm{~kg}(22.05 \mathrm{lb})$ load - Clean room class 6 (ISO14644-1) at $0.5 \mathrm{~m} / \mathrm{s}(1.64 \mathrm{ft} / \mathrm{s})$ with $10 \mathrm{~kg}(22.05 \mathrm{lb})$ load
	Increased clean room class PAS42BBM1000A1RA $\bullet \bullet$ R - Clean room class 5 (ISO14644-1) at $1.8 \mathrm{~m} / \mathrm{s}$ ($5.91 \mathrm{ft} / \mathrm{s}$) with $10 \mathrm{~kg}(22.05 \mathrm{lb})$ load - Clean room class 4 (ISO14644-1) at $0.5 \mathrm{~m} / \mathrm{s}(1.64 \mathrm{ft} / \mathrm{s})$ with $10 \mathrm{~kg}(22.05 \mathrm{lb})$ load
	Increased clean room class PAS42BBM1000A1RA $\bullet \bullet R$ with suction $11.7 \mathrm{~m}^{3} / \mathrm{h}(60.03 \mathrm{cu} \mathrm{fth})$ - Clean room class 2 (ISO14644-1) at $1.8 \mathrm{~m} / \mathrm{s}$ ($5.91 \mathrm{ft} / \mathrm{s}$) with $10 \mathrm{~kg}(22.05 \mathrm{lb})$ load - Clean room class 1 (ISO14644-1) at $1.0 \mathrm{~m} / \mathrm{s}$ ($3.28 \mathrm{ft} / \mathrm{s}$) with $10 \mathrm{~kg}(22.05 \mathrm{lb})$ load

[^1] the product data sheet.

1 Axis profile
2 T-slots for mounting the axis (on both sides and on lower side)
3 T-slot for positioning the sensor holders (on both sides)
4 Sensor with cable and connector (two per axis, optional equipment)
5 Sensor holder (two per axis, optional equipment)
6 Toothed belt pulley with hollow shaft (in each end block)
7 End block (two per axis)
8 Cover strip clamp (two per axis, optional equipment)
9 Cover strip (optional equipment)
10 Toothed belt (hidden, under the cover strip)
11 Carriage with threaded holes and centering for reproducible load mounting
12 Strip deflector (two per axis, optional equipment)
13 Rubber buffer (two per axis)
14 End block cover (at each end block)
15 Coupling housing (optional equipment)
16 Adaptation plate (optional equipment)
17 Exchangeable grease nipples on each side of the carriage (two per side)
18 Gearbox (optional equipment)
19 Contact plate (optional equipment)
20 Motor (optional equipment)
(1) Technical data (characteristics, dimensions, etc.) for Lexium PAS4•B portal axes are available on the product data sheet.
(2) Description of a Lexium PAS4•B portal axis; the configuration options selected will determine whether or not certain components are included.

Lexium PAS, PAD

Portal axes with movable carriage and fixed axis Lexium PAS4•B portal axes

Mechanical characteristics (1)
Force and torque ($\mathrm{Fx}, \mathrm{Fy}, \mathrm{Fz}, \mathrm{Mx}, \mathrm{My}, \mathrm{Mz}$) are calculated for a service life of $30,000 \mathrm{~km}$ (18,641 miles)

Type of portal axis		PAS41BR	PAS42BR	PAS42BB 践	PAS43BR	PAS43BB	PAS44BB
Axis profile cross-section (width x height)	mm (in)	$\begin{aligned} & \text { Size 1: } 40 \times 40 \\ & (1.58 \times 1.58) \end{aligned}$	Size 2: $60 \times 60(2.36 \times 2.36)$		Size 3: $80 \times 80(3.15 \times 3.15)$		$\begin{aligned} & \text { Size 4: } 110 \times 110 \\ & (4.33 \times 4.33) \end{aligned}$
Type of mechanical drive element		Toothed belt					
Type of guide		Roller guide	Roller guide	Ball guide	Roller guide	Ball guide	Ball guide
Feed per revolution	$\mathrm{mm} / \mathrm{rev}$ (in/rev)	84 (3.31)	155 (6.10)		205 (8.07)		264 (10.39)
Max. feed force (Fx) (3)	N (Ibf)	300 (67.44)	800 (179.84)		1,100 (247.28)		2,600 (584.50)
Max. speed (2)	m/s (ft/s)	8 (26.25)		5 (16.40)	8 (26.25)	5 (16.40)	
Max. acceleration (2)	$\mathrm{m} / \mathrm{s}^{2}\left(\mathrm{ft} / \mathrm{s}^{2}\right)$	20 (65.62)		50 (164.04)	20 (65.62)	50 (164.04)	
Max. drive torque (3)	Nm (lbf/in)	4 (35.40)	20 (177.01)		36 (318.62)		110 (973.58)
Max. force (Fy) (3)	N (Ibf)	660 (148.37)		2,810 (631.71)	1,760 (395.66)	4,410 (991.407	6,270 (1,409.55)
Max. force (Fz) (3)		430 (96.66)		2,810 (631.71)	1,040 (233.80)	4,410 (991.407	6,270 (1,409.55)
Max. torque (Mx) (3)	Nm (lbf/in)	5 (44.25)	9 (79.65)	19 (168.16)	29 (256.67)	42 (371.73)	68 (601.85)
Max. torque (My) with carriage type 1 (3) with carriage type 2 with carriage type 4	Nm (Ibf/in)	-	18 (159.31)	74 (654.95)	51 (451.38)	162 (1,433.82)	256 (2,265.79)
		11 (97.35)	31 (274.374)	$194(1,717.04)$	87 (770.01)	379 (3,354.43)	655 (5,797.23)
		28 (247.82)	56 (495.64)	362 (3,203.96)	160 (1,416.11)	687 (6,080.46)	1,209 (10,700.55)
Max. torque (Mz) with carriage type 1 (3) with carriage type 2 with carriage type 4	Nm (Ibf/in)	-	28 (247.82)	74 (654.95)	86 (761.16)	162 (1,433.82)	256 (2,265.79)
		17 (150.46)	48 (424.83)	194 (1,717.04)	148 (1,309.91)	379 (3,354.43)	655 (5,797.23)
		43 (380.58)	87 (770.01)	362 (3,203.96)	271 (2,398.55)	687 (6080.46)	1,209 (10,700.55)
Min....max. stroke (4)	mm (in)	$\begin{aligned} & 125 \ldots . .3,000 \\ & (4.92 . .118 .11) \end{aligned}$	$\begin{aligned} & 125 \ldots 5,500 \\ & (4.92 \ldots 216.54) \end{aligned}$	$\begin{aligned} & 9 \ldots 5,500 \\ & (0.35 \ldots 216.54) \end{aligned}$	$\begin{aligned} & 175 \ldots 5,500 \\ & (6.89 \ldots 216.54) \end{aligned}$	$\begin{aligned} & 11 \ldots 5,500 \\ & (0.43 \ldots 216.54) \end{aligned}$	$\begin{aligned} & 13 \ldots 5,500 \\ & (0.51 \ldots 216.54) \end{aligned}$
Repeatability	mm (in)	± 0.05 (0.002)					

(1) Technical data (characteristics, dimensions, etc.) for Lexium PAS4•B portal axes are available on the product data sheet.
(2) Depending on load and stroke.
(3) Forces and torques decrease at increasing speeds. If several forces ($F y, F z$) and torques ($M x, M y, M z$) acting at the same time, refer to the hardware quide.
(4) Min. stroke required for the lubrication of the linear guide. For information about greater strokes for ball guides, contact your Schneider Electric representative.

Forces and torques

Lexium PAS, PAD
 Portal axes with movable carriage and fixed axis Lexium PAS4•B portal axes

(1) Technical data (characteristics, dimensions, etc.) for Lexium PAS4•B portal axes are available on the product data sheet.
(2) For the second part of the reference on page 10.
(3) For the min. and max. stroke per size, refer to the mechanical characteristics of the portal axes (see page 8).
(4) Supplied with a 0.1 m (0.33 ft) cable equipped with an M8 connector. For sensor extension cable, refer to accessories (see page 55).
(5) Only carriages of the same type can be used. All carriages are driven.
(6) For the possible mounting options see the following pictures:

Lexium PAS, PAD

Portal axes with movable carriage and fixed axis
Lexium PAS4•B portal axes

(1) Technical data (characteristics, dimensions, etc.) for Lexium PAS4•B portal axes are available on the product data sheet.
(2) For the first part of the reference, see page 9 .
(3) For further information, refer to motor and/or gearbox configuration and orientation (see page 11).
(4) Planetary gearboxes from company Neugart GmbH.
(5) In case of a straight planetary gearbox, the orientation references to the setscrew of the drive unit adaptation.
(6) With reference to the motor connectors.

PAS4•B．．．L／3•Gセゃ०X
PAS4•B．．．L／3•A॰ゃゃX
PAS4•B．．．L／4ゃゃX७ゃX

PAD42PB
Lexium PAD4 portal axes with motor and gearbox mounted

Presentation (1)

Lexium PAD4 are ready-to-install portal axes with toothed belt drive and two linear guides in three drive designs. The axis profile is fixed in place and the load is mounted on the movable carriage couple or single carriage. The portal axes are ideally suited for the transport of heavy loads with short and long strokes.
■ The designs differ in the number and type of driven toothed belts:

- Carriage couple driven by two coupled toothed belts: higher dynamics
- Individual carriages, each driven with one toothed belt for independent movements of the carriages: more flexibility
- Carriage couple driven by one toothed belt: cost-optimized solution
- The very high speeds and accelerations of the Lexium PAD4 portal axes enable very short positioning times. The high feed forces with good repeatability are made possible by the steel tension members in the toothed belt. The fabric coating of the toothed belt ensures friction-optimized in and out toothing and thus quiet and smooth movement.
- One type of guide is available for transmitting the load to the axis profile designed using FEM:
- The double recirculating ball bearing guide in combination with the very rigid axis profile is particularly suitable for applications with lateral torsional torque (Mx) or applications with very high force and torque loads.
- The individual forces (Fx, Fy, Fz) and torques (Mx, My, Mz) of the Lexium PAD4 portal axes are designed for a very long service life of $30,000 \mathrm{~km}$ (18,641.13 miles). If the specified forces and torques are not reached, the service life of the Lexium PAD4 portal axes increase.
- The T-slots at the bottom and on both sides of the axis profile can be used to fasten the Lexium PAD4 portal axes. The portal axes are typically used horizontally, but can also be mounted vertically, laterally or overhead. The permissible forces and torques do not change.
- The Lexium PAD4 portal axes are available with different carriage lengths and with up to three driven carriages. An optionally selectable cover strip is used to protect internal components such as toothed belt and linear guide. Furthermore, an antistatic toothed belt and various sensors can be selected as options.
- The Lexium PAD4 portal axes can be combined with all motors and / or gearboxes offered by Schneider Electric. The mounting of third-party motors and / or third-party gearboxes is also possible.

Applications

Applications with the following requirements:

- Positioning over long distances: material handling, palletizers, etc.
- Positioning of parts at high speeds: flying shear, optical and measuring applications, labeling, etc.
- High feed forces: hoisting, cutting, machining, etc.

Special product features

- Stroke deliverable per millimeter
- Carriage with threaded holes and centering for reproducible load mounting
- Exchangeable grease nipples, for example to mount an automatic lubrication system
■ Motor and gearbox assembly via flexible coupling system on both sides of the end blocks
- Sensors movable in T-slot
- Customized special solutions on request
(1) Technical data (characteristics, dimensions, etc.) for Lexium PAD4 portal axes are available on the product data sheet.

PAD42BB / PAD42EB

1 Axis profile

2 T-slots for mounting the axis (on both sides and o lower side)
3 T-slot for positioning the sensor holders (on both sides)
4 Sensor with cable and connector (two per axis, optional equipment)
5 Sensor holder (two per axis, optional equipment)
6 Toothed belt pulley with hollow shaft (in each end block)
7 End block (four per axis)
8 Cover strip clamp (four per axis, optional equipment)
9 Cover strip (two per axis, optional equipment)

10 Toothed belt (two per axis, hidden, under the cover strip)
11 Carriage with threaded holes and centering for reproducible load mounting (two per axis)
12 Strip deflector (four per axis, optional equipment)
13 Rubber buffer (four per axis)
14 End block cover (at each end block)
15 End block mid-plate (two per axis)
16 Coupling housing (optional equipment)
17 Adaptation plate (optional equipment)
18 Exchangeable grease nipples on each side of the carriage (two per side)
19 Gearbox (optional equipment)
20 Contact plate (optional equipment)
21 Motor (optional equipment)

PAD42PB

1 Axis profile
2 T-slots for mounting the axis (on both sides and on lower side)
3 T-slot for positioning the sensor holders (on both sides)
4 Sensor with cable and connector (two per axis, optional equipment)
5 Sensor holder (two per axis, optional equipment)
6 End plate (two per axis)
7 Toothed belt pulley with hollow shaft (hidden, in each end block)
8 End block (two per axis)
9 Cover strip clamp (four per axis, optional equipment)

11 Toothed belt (hidden, under the cover strip)
12 Carriage with threaded holes and centering for reproducible load mounting (two per axis)
13 Strip deflector (four per axis, optional equipment)
14 Rubber buffer (four per axis)
15 Distance plate
16 End block cover (at each end block)
17 Coupling housing (optional equipment)
18 Adaptation plate (optional equipment)
19 Gearbox (optional equipment)
20 Exchangeable grease nipples on each side of the carriage (two per side)

10 Cover strip (two per axis, optional equipment)
(1) Technical data (characteristics, dimensions, etc.) for Lexium PAD4 portal axes are available on the product data sheet.
(2) Description of Lexium PAD4 portal axes; the configuration options selected will determine whether or not certain components are included.

Portal axes with movable carriage and fixed axis Lexium PAD4 portal axes

Mechanical characteristics (1)

Force and torque (Fx, Fy, Fz, Mx, My, Mz) are calculated for a service life of 30,000 km (18,641 miles)

Type of portal axes		PAD42BB	PAD42EB	PAD42PB
Axis profile cross-section (width x height)	mm (in)	130×60 (5.12×2.36)		
Type of mechanical drive element		Toothed belt		
Type of guide		Double ball guide		
Feed per revolution	mm/rev (in/rev)	155 (6.10)		
Max. feed force (Fx) (3)	N (Ibf)	1,200 (269.77)	800 (179.84)	
Max. speed (2)	m / s (ft/s)	5 (16.40)		
Max. acceleration (2)	$\mathrm{m} / \mathrm{s}^{2}\left(\mathrm{ft} / \mathrm{s}^{2}\right.$)	50 (164.04)		
Max. drive torque (3)	Nm (lbf/in)	30 (265.52)	20 (177.01)	
Max. force (Fy) (3)	N (Ibf)	4,209 (946.22)	2,806 (630.81)	4,209 (946.22)
Max. force (Fz) (3)	N (Ibf)	4,209 (946.22)	2,806 (630.81)	4,209 (946.22)
Max. torque (Mx) (3)	Nm (lbflin)	98 (867.37)	19 (168.16)	98 (867.37)
Max. torque (My) (3)	Nm (lbf/in)	149 (1,318.76)	74 (654.95)	149 (1,318.76)
		387 (3,425.23)	194 (1,717.04)	387 (3,425.23)
		724 (6,407.93)	362 (3,203.96)	724 (6,407.93)
Max. torque (Mz) (3)	Nm (Ibf/in)	111 (982.43)	74 (654.95)	111 (982.43)
		290 (2,566.71)	194 (1,717.04)	290 (2,566.71)
		543 (4,805.95)	362 (3,203.96)	543 (4,805.95)
Min....max. stroke (4)	mm (in)	9...5,500 (0.35...216.54)		
Repeatability	mm (in)	± 0.05 (0.002)		

(1) Technical data (characteristics, dimensions, etc.) for Lexium PAD4 portal axes are available on the product data sheet.
(2) Depending on load and stroke.
(3) Forces and torques decrease at increasing speeds. If several forces (Fy, Fz) and torques (Mx, My, Mz) acting at the same time, refer to the to the hardware guide.
(4) Min. stroke required for the lubrication of the linear guide. For information about greater strokes for ball guides, contact your Schneider Electric representative.

Forces and torques

Lexium PAS, PAD

Portal axes with movable carriage and fixed axis Lexium PAD4 portal axes

(1) Technical data (characteristics, dimensions, etc.) for Lexium PAD4 portal axes are available on the product data sheet.
(2) For the second part of the reference on page 16.
(3) For the min. and max. stroke per size, refer to the mechanical characteristics of the portal axes (see page 14).
(4) Supplied with a $0.1 \mathrm{~m}(0.33 \mathrm{ft})$ cable equipped with an M8 connector. For sensor extension cable, refer to accessories (see page 55).
(5) Only carriage couples of the same type can be used. All carriage couples are driven.
(6) For the possible mounting options see the following pictures:

[^2]| References (continued) (1) | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| To order Lexium PAD4 portal axes, complete each reference by replacing the " \bullet ": | | | | | | | | | |
| Example: PAD42BBM1000A1NAXXXL (2)/21G0H70
 + PLE60 3:1 + BMH0702P01A2A | | (2)! | - | $\bullet \bullet$ | - | $\bullet \bullet$ | - | + | \ldots |
| Motor and/or gearbox configuration (3) | Motor only | 1 | 1 | | | | | | |
| | Motor and gearbox | 1 | 2 | | | | | | |
| | Gearbox only | 1 | 3 | | | | | | |
| | Without motor, without gearbox, with adaptation material (select motor/gearbox type) | 1 | 4 | | | | | | |
| | Without motor, without gearbox, without adaptation material | 1 | X | | | | | | |
| Gearbox interface (4) (5) | PLE 40 - straight planetary gearbox | 1 | | OG | | | | | |
| | PLE 60 - straight planetary gearbox | 1 | | 1G | | | | | |
| | PLE 80 - straight planetary gearbox | 1 | | 3G | | | | | |
| | PLE 120 - straight planetary gearbox | 1 | | 5G | | | | | |
| | WPLE 40 - angular planetary gearbox | 1 | | OA | | | | | |
| | WPLE 60 - angular planetary gearbox | 1 | | 1A | | | | | |
| | WPLE 80 - angular planetary gearbox | 1 | | 3A | | | | | |
| | WPLE 120 - angular planetary gearbox | 1 | | 5A | | | | | |
| | Third-party gearbox without mounting by Schneider Electric (gearbox drawing required) | 1 | | YY | | | | | |
| | Third-party gearbox with mounting by Schneider Electric (gearbox must be provided) | 1 | | ZZ | | | | | |
| | Without gearbox | 1 | | XX | | | | | |
| Gearbox orientation (3) (6) | 0° | 1 | | | 3 | | | | |
| | 90° | 1 | | | 0 | | | | |
| | 180° | 1 | | | 9 | | | | |
| | 270° | 1 | | | 6 | | | | |
| | Without gearbox | 1 | | | X | | | | |
| Motor interface (5) | Stepper motors BRS 368 | 1 | | | | V8 | | | |
| | Stepper motors BRS 397, 39A | 1 | | | | V9 | | | |
| | Stepper motors BRS 39B | 1 | | | | V0 | | | |
| | Stepper motors BRS 3AC, 3AD | 1 | | | | V1 | | | |
| | Integrated drive with stepper motor ILS $\bullet \bullet 571,572$ | 1 | | | | 16 | | | |
| | Integrated drive with stepper motor ILS $\bullet \bullet 573$ | 1 | | | | 17 | | | |
| | Integrated drive with stepper motor ILS••851, 852 | 1 | | | | 19 | | | |
| | Integrated drive with stepper motor ILS $\bullet \bullet 853$ | 1 | | | | 18 | | | |
| | Integrated drive with brushless DC motor ILE $\bullet \bullet 66$ with spur wheel gear | 1 | | | | E7 | | | |
| | Integrated drive with servo motor ILA $\bullet \bullet 57$ | 1 | | | | A6 | | | |
| | Servo motors BSH/SH3 0401, 0402 | 1 | | | | H0 | | | |
| | Servo motors BSH/SH3 055 | 1 | | | | H5 | | | |
| | Servo motors BSH/BMH/BMI/MH3/SH3/ILM 0701, 0702 | 1 | | | | H7 | | | |
| | Servo motors BSH/BMH/BMI/MH3/SH3/ILM 0703 | 1 | | | | H8 | | | |
| | Servo motors BSH/BMH/BMI/MH3/SH3/ILM 1001, 1002, 1003 | 1 | | | | H1 | | | |
| | Servo motors BSH1004 | 1 | | | | H4 | | | |
| | Servo motors BSH/BMH/MH3/SH3/LLM 1401, 1402, 1403, 1404 | 1 | | | | H2 | | | |
| | Servo motors BCH2•B A5, 01 | 1 | | | | C1 | | | |
| | Servo motors BCH2॰D 02, 04 | 1 | | | | C2 | | | |
| | Servo motors BCH2॰F 04 | 1 | | | | C3 | | | |
| | Servo motors BCH2^F 07 | 1 | | | | C4 | | | |
| | Servo motors BCH2•H 10, 20 | 1 | | | | C5 | | | |
| | Servo motors BCH2•M 08 | 1 | | | | C6 | | | |
| | Servo motors BCH2•M 03, 05, 06, 10, 09, 15, 20 | 1 | | | | C7 | | | |
| | Servo motors BCH2•R20, 30, 35, 45 | 1 | | | | C8 | | | |
| | Third-party motor without mounting by Schneider Electric (motor drawing required) | 1 | | | | YY | | | |
| | Third-party motor with mounting by Schneider Electric (motor drawing required; motor must be provided) | I | | | | ZZ | | | |
| | Without motor | 1 | | | | XX | | | |
| Motor orientation (3) (7) | 0° | 1 | | | | | 3 | | |
| | 90° | 1 | | | | | 0 | | |
| | 180° | 1 | | | | | 9 | | |
| | 270° | 1 | | | | | 6 | | |
| | Without motor | 1 | | | | | X | | |
| Planetary gearbox gear ratio motor reference | State the planetary gearbox gear ratio and the complete motor reference at the end of the reference, in plain text. Example: PLE60 3:1 + BMH0702P01A2A | | | | | | | + | .. | motor reference

Example: PLE60 3:1 + BMH0702P01A2A
(1) Technical data (characteristics, dimensions, etc.) for Lexium PAD4 portal axes are available on the product data sheet.
(2) For the first part of the reference, see page 15.
(3) For further information, refer to motor and/or gearbox configuration and orientation (see page 17).
(4) Planetary gearboxes from company Neugart GmbH.
(5) Valid for both motors and/or gearboxes of the PAD42EB.
(6) In case of a straight planetary gearbox, the orientation references to the setscrew of the drive unit adaptation.
(7) With reference to the motor connectors.

Lexium PAS，PAD

Portal axes with movable carriage and fixed axis Lexium PAD4 portal axes
Motor and／or gearbox configuration and orientation
Hollow shaft at both ends
PAD42EB．．．H／XXXXXXX

Right－hand side			
PAD42•B．．．R／1XXX＊＊	PAD42•B．．．R／2•Gセ७७७	PAD42•B．．．R／2•A७७७७	PAD42•B．．．R／3•Gセ＊＊X
PAD42•B．．．R／3•A७ゃ๑X	PAD42•B．．．R／4e＠Xe॰X	PAD42•B．．．R／XXXXXXX	

Note：For a PAD42BB or PAD42PB axis without motor，gearbox，or adaptation material：in the type code（see page 15），select L or R as character under Mounting options for motor and／or gearbox to define the position of the double coupling or the distance plate．

Lexium PAS4•S portal axes with motor and gearbox mounted

Presentation (1)

Lexium PAS4eS are ready-to-install portal axes with ballscrew and one linear guide in three sizes. The axis profile is fixed in place and the load is mounted on the movable carriage. The portal axes are ideally suited for applications with high feed force and for the transport of heavy loads at medium speeds.

- The very good repeatability of the Lexium PAS4•S portal axes is made possible by the ballscrew. To adapt the feed forces, speeds and accelerations to the application, three ballscrew pitches are available for each size. The optionally available ballscrew supports enables higher speeds with longer strokes at the same time.
- One type of guide is available for transmitting the load to the axis profile designed using FEM:
- The recirculating ball bearing guide is particularly suitable for applications with high forces and torques.
- The individual forces (Fx, Fy, Fz) and torques (Mx, My, Mz) of the Lexium PAS4•S portal axes are designed for a long service life of $10,000 \mathrm{~km}$. If the specified forces and torques are not reached, the service life of the Lexium PAS4•S portal axes increase
- The T-slots at the bottom and on both sides of the axis profile can be used to fasten the Lexium PAS4•S portal axes. The portal axes are typically used horizontally, but can also be mounted vertically, laterally or overhead. The permissible forces and torques do not change.
- The Lexium PAS4•S portal axes are available with different carriage lengths and with up to two additional non-driven carriages. An optionally selectable cover strip is used to protect internal components, such as ballscrew and linear guide. Furthermore, various sensors can be selected as an option.
- The Lexium PAS4•S portal axes can be combined with all motors and / or gearboxes offered by Schneider Electric. The mounting of third-party motors and / or third-party gearboxes is also possible.

Applications

Applications with the following requirements:

- A precision feed movement and guiding, even at variable loads and torques
- High feed forces: clamping, cutting, etc.
- Precise positioning and repeatability: optical and measuring applications, etc.

Special product features

- Stroke deliverable per millimeter
- Carriage with threaded holes and centering for reproducible load mounting
- Exchangeable grease nipples, for example to mount an automatic lubrication system
- Motor and gearbox assembly via flexible coupling system on both sides of the end blocks
- Sensors movable in T-slot
- Customized special solutions on request

[^3]Description, characteristics

Lexium PAS, PAD

Portal axes with movable carriage and fixed axis Lexium PAS4•S portal axes

Description (1) (2)

1 Axis profile
2 T-slots for mounting the axis (on both sides and on lower side)
3 T-slot for positioning the sensor holders (on both sides)
4 End plate
5 Cover strip clamp (two per axis, optional equipment)
6 Cover strip (optional equipment)
7 Ballscrew (hidden, under the cover strip)
8 Carriage with threaded holes and centering for reproducible load mounting
9 Contact plate (hidden, on the side of the carraige, optional equipment)
10 Strip deflector (two per axis, optional equipment)
11 Rubber buffer (two per axis)
12 Sensor with cable, connector and sensor holder (two per axis, optional equipment)
13 Drive block with drive shaft
14 Coupling housing (optional equipment)
15 Motor (optional equipment)
16 Adaptation plate (optional equipment)
17 Exchangeable grease nipples on each side of the carriage (three per side)

Mechanical characteristics (1)

Force and torque (Fx, Fy, Fz, Mx, My, Mz) are calculated for a service life of $10,000 \mathrm{~km}$ (6,214 miles)

Type of portal axis			PAS42SBB	PAS42SBD	PAS42SBF	PAS43SBB	PAS43SBD	PAS43SBG	PAS44SBB	PAS44SBD	PAS44SBH
Axis profile (width x heig	ross-section t)	mm (in)	Size 2: $60 \times 60(2.36 \times 2.36)$			Size 3: $80 \times 80(3.15 \times 3.15)$			Size 4: 110×110 (4.33 $\times 4.33)$		
Type of mechanical drive element			Ballscrew								
Type of guide			Ball guide								
Ballscrew pitch		$\mathrm{mm} / \mathrm{rev}$ (in/rev)	$5(0,2)$	$10(0,39)$	$16(0,63)$	$5(0,2)$	$10(0,39)$	$20(0,79)$	$5(0,2)$	$10(0,39)$	$25(0,98)$
Ballscrew diameter		mm (in)	16 (0.63)			20 (0.79)			25 (0.98)		
Max. feed force (Fx) (4)		N (Ibf)	$\begin{aligned} & 2,980 \\ & (669.93) \end{aligned}$	$\begin{aligned} & 1,560 \\ & (350.70) \end{aligned}$	$\begin{array}{\|l\|} \hline 1,540 \\ (346.20) \end{array}$	$\begin{array}{\|l\|} \hline 3,400 \\ (764.35) \end{array}$	$\begin{aligned} & 2,600 \\ & (584.50) \end{aligned}$	$\begin{array}{\|l\|} \hline 1,720 \\ (386.67) \end{array}$	$\begin{aligned} & 3,700 \\ & (831.79) \end{aligned}$	$\begin{array}{\|l} 4,520 \\ (1 ? 016.13) \end{array}$	$\begin{array}{\|l} 3,000 \\ (674.42) \end{array}$
Max. speed (3)		m / s (ft/s)	0.25 (0.82)	0.5 (1.64)	0.8 (2.62)	0.25 (0.82)	0.5 (1.64)	1 (3.28)	0.25 (0.82)	0.5 (1.64)	1.25 (4.10)
Max. acceleration (3)		$\mathrm{m} / \mathrm{s}^{\mathbf{2}}$ (ft/s s^{2})	2 (6.56)	4 (13.12)	6.4 (21.00)	2 (6.56)	4 (13.12)	8 (26.25)	2 (6.56)	4 (13.12)	10 (32.81)
Max. drive torque (4)		Nm (lbf/in)	3.2 (28.32)	3.3 (29.20)	4.9 (43.36)	3.7 (32.74)	5.3 (46.90	6.8 (60.18)	4.3 (38.05)	9 (79.65)	14.3 (126.5)
Max. force (Fy) (4)		N (lbf)	4,050 (910.47)			6,360 (1,429.78)			9,040 (2,032.27)		
Max. force (Fz) (4)		N (Ibf)	4,050 (910.47)			$6,360(1,429.78)$			9,040 (2,032.27)		
Max. torque (Mx) (4)		Nm (lbf/in)	27 (238.97)			$60 \text { (531.04) }$			$98 \text { (867.37) }$		
Max. torque (My) (4)	With carriage type 1	Nm (lbf/in)	304 (2,690.62)			556 (4,921.01)			935 (8,275.44)		
	With carriage type 4		668 (5,912.29)			1,224 (10,833.31)			2,155 (19,073.35)		
Max. torque(Mz) (4)	With carriage type 1	Nm (lbf/in)	304 (2,690.62)			556 (4,921.01)			935 (8,275.44)		
	With carriage type 4		668 (5,912.29)			1,224 (10,833.31)			2,155 (19,073.35)		
Min....max. stroke (5)		mm (in)	9...1,500 (0.35...59.06)			11...3,000 (0.43...118.11)			13...3,000 (0.51...118.11)		
Repeatability		mm (in)	± 0.02 (0.001)								

(1) Technical data (characteristics, dimensions, etc.) for Lexium PAS4•S portal axes are available on the product data sheet.
(2) Description of Lexium PAS4•S portal axes; the configuration options selected will determine whether or not certain components are included
(3) Depending on load and stroke.
(4) Forces and torques decrease at increasing speeds. If several forces (Fy, Fz) and torques (Mx, My, Mz) acting at the same time, refer to the hardware guide. (5) Min. stroke required for the lubrication of the linear guide.

Forces and torques

Portal axes with movable carriage and fixed axis
Lexium PAS4•S portal axes

(1) Technical data (characteristics, dimensions, etc.) for Lexium PAS4•S portal axes are available on the product data sheet.
(2) For the second part of the reference, see page 21.
(3) For the min. and max. stroke per size, refer to the mechanical characteristics of the portal axes (see page 19).
(4) Supplied with a $0.1 \mathrm{~m}(0.33 \mathrm{ft})$ cable equipped with an M8 connector. For sensor extension cable, refer to accessories (see page 55).
(5) Ballscrew support corresponds to total axis length and ballscrew speed.
(6) Only carriages of the same type can be used. Only the carriage next to the motor is driven.
(7) For the possible mounting options see the following pictures:

Portal axes with movable carriage and fixed axis Lexium PAS4•S portal axes

Lexium TAS4 linear table with motor mounted

Presentation ${ }_{(1)}$

Lexium TAS4 are ready-to-install linear tables with ball screw and two linear guides in three sizes. The axis profile is fixed in place and the load is mounted on the movable carriage. The linear tables are ideally suited for applications with high feed force and for the transport of heavy loads at medium speeds.

- The very good repeatability of the Lexium TAS4 linear tables is made possible by the ball screw. To adapt the feed forces, speeds and accelerations to the application, three ball screw pitches are available for each size.
- One type of guide is available for transmitting the load to the axis profile designed using FEM:
- The double recirculating ball bearing guide in combination with the rigid axis profile is particularly suitable for applications with lateral torsional torque (Mx) or applications with very high force and torque loads.
■ The individual forces ($\mathrm{Fx}, \mathrm{Fy}, \mathrm{Fz}$) and torques ($\mathrm{Mx}, \mathrm{My}, \mathrm{Mz}$) of the Lexium TAS4 tables are designed for a long service life of $10,000 \mathrm{~km}$ (6,214 miles). If the specified forces and torques are not reached, the service life of the Lexium TAS4 linear tables increase.
- The T-slots at the bottom and on both sides of the axis profile can be used to fasten the Lexium TAS4 linear tables. The linear tables are typically used horizontally, but can also be mounted vertically, laterally or overhead.
- The linear tables Lexium TAS4 are optionally available with bellows to protect internal components, such as ball screw and linear guide. Furthermore, internal sensors and a belt drive can be selected as options. The belt drive can be mounted in four different positions.
- The Lexium TAS4 linear tables can be combined with all motors and / or gearboxes offered by Schneider Electric. The mounting of third-party motors and / or third-party gearboxes is also possible.

Applications

Applications with the following requirements:

- Feed movement without mechanical backlash: cutting, separating, labeling, etc.
- High feed forces: clamping, machining, etc.
- Precise movement of heavy loads: material handling, etc.
- Precise positioning: optical applications, laser use, etc.

Special product features

- Stroke deliverable per millimeter
- Carriage with threaded holes and centering for reproducible load mounting

■ Exchangeable grease nipples, for example to mount an automatic lubrication system

- Motor and gearbox assembly via flexible coupling system
- Sensors movable in T-slot
- Customized special solutions on request

[^4]Description, characteristics

Lexium TAS

Linear tables with movable carriage and fixed axis profile
 Lexium TAS4 linear tables

Description (1) (2)

Axis profile
T-slots for mounting the axis (on both sides and on lower side)
End plate
Bellow clamp (four per axis, optional equipment)
Bellow (two per axis, optional equipment)
Ballscrew (hidden, under the bellow)
Carriage with threaded holes and T-slots for load mounting Sensor with cable or connector (hidden, under the bellow, optional equipment)
Drive block with drive shaft
Cable gland for sensor cable outlet (hidden)
Coupling housing (optional equipment)
Motor (optional equipment)
Adaptation plate (optional equipment)
Exchangeable grease nipples on each side of the carriage (one per side)

Mechanical characteristics (1)

Force and torque (Fx, Fy, Fz, Mx, My, Mz) are calculated for a service life of $5,000 \mathrm{~km}$ (3,107 miles) for TAS41 and 10,000 km ($6,214 \mathrm{miles}$) for TAS42 and TAS43

Type of linear table		TAS41SBA	TAS41SBB	TAS41SBC	TAS42SBB	TAS42SBC	TAS42SBD	TAS43SBB	TAS43SBC	TAS43SBE
Axis profile cross-section (width x height)	mm (in)	Size 1: $100 \times 39(3.94 \times 1.54)$			Size 2: $150 \times 54(5.91 \times 2.13)$			Size 3: 200×59 (7.87×2.32)		
Type of mechanical drive element		Ballscrew								
Type of guide		Double ball guide								
Ballscrew pitch	mm/rev (in/rev)	2 (0.08)	5 (0.2)	10 (0.39)	5 (0.2)	10 (0.39)	16 (0.63)	5 (0.2)	10 (0.39)	20 (0.79)
Ballscrew diameter	mm (in)	12 (0.47)			16 (0.63)			20 (0.79)		
Max. feed force (Fx) (4)	N (lbf)	500 (112.40)	800 (179.84)	780 (175.35)	$\begin{aligned} & 2,200 \\ & (494.57) \end{aligned}$	$\begin{aligned} & 1,120 \\ & (251.78) \end{aligned}$	$\begin{aligned} & 1,080 \\ & (242.79) \end{aligned}$	$\begin{aligned} & 2,580 \\ & (580.00) \end{aligned}$	$\begin{aligned} & 1,760 \\ & (395.66) \end{aligned}$	$\begin{array}{\|l\|} \hline 1,700 \\ (382.17) \end{array}$
Max. speed (3)	m/s (ft/s)	0.1 (0.33)	0.25 (0.82)	0.5 (1.64)	0.25 (0.82)	0.5 (1.64)	0.8 (2.62)	0.25 (0.82)	0.5 (1.64)	1 (3.28)
Max. acceleration (3)	$\begin{aligned} & \mathrm{m} / \mathrm{s}^{2} \\ & \left(\mathrm{ft} / \mathrm{s}^{2}\right) \end{aligned}$	0.8 (2.62)	2 (6.56)	4 (13.12)	2 (6.56)	4 (13.12)	6.4 (21.00)	2 (6.56)	4 (13.12)	8 (26.25)
Max. drive torque(4)	Nm (lbf/in)	0.4 (3.54)	0.9 (7.96)	1.6 (14.16)	2.2 (19.47)	2.3 (20.35)	3.4 (30.09)	2.7 (23.89)	3.5 (30.97)	6.4 (56.64)
Max. force (Fy) (4)	N (lbf)	1,720 (386.67)			2,660 (597.99)			3,550 (798.07)		
Max. force (Fz) (4)	N (lbf)	+ 2,155 (484.46)			+6,285 (1,412.92)			+8,380 (1,883.89)		
	N (lbf)	-2,155 (-484.46)			-3,140 (-705.90)			-4,190 (-941.94)		
Max. torque (Mx) (4)	Nm (lbf/in)	48 (424.83)			110 (973.58)			205 (1,814.40)		
Max. torque (My) (4)	Nm (lbf/in)	90 (796.56)			190 (1,681.64)			335 (2,964.99)		
Max. torque (Mz) (4)	Nm (Ibf/in)	72 (637.25)			160 (1,416.11)			285 (2,522.46)		
Min....max. stroke (5)	mm (in)	7... 600 (0.28...23.62)			9...1,000 (0.35...39.37)			11...1,500 (0.43...59.06)		
Repeatability	mm (in)	± 0.02 (0.001)								

(1) All technical data (characteristics, dimensions, etc.) for Lexium TAS4 linear tables are available on the product data sheet.
(2) Description of Lexium TAS linear tables; the configuration options selected will determine whether or not certain components are included.
(3) Depending on load and stroke.
(4) Forces and torques decrease at increasing speeds. If several forces (Fy, Fz) and torques (Mx, My, Mz) acting at the same time, refer to the user quide.
(5) Min. stroke required for the lubrication of the linear guide.

Forces and torques

Lexium TAS

Linear tables with movable carriage and fixed axis
profile
Lexium TAS4 linear tables

References (1)												
To order Lexium TAS4 linear table, complete each reference by replacing the ".":												
Example: TAS42SBD0500A1BS/... (2)		TAS4	-	S	B	\bullet	-๑ゃ๑	-	1	-	-	/(2)
Size (Axis profile crosssection)	$100 \times 39 \mathrm{~mm}(3.94 \times 1.54 \mathrm{in})$		1									1
	$150 \times 54 \mathrm{~mm}$ ($5.91 \times 2.13 \mathrm{in}$)		2									1
	$200 \times 59 \mathrm{~mm}$ ($7.87 \times 2.32 \mathrm{in}$)		3									1
Type of mechanical drive element	Ballscrew			S								1
Type of guide	Double recirculating ball bearing guide				B							1
Ballscrew pitch	$2 \mathrm{~mm} / \mathrm{rev}$ (0.08 in/rev) (for size 1)					A						1
	$5 \mathrm{~mm} / \mathrm{rev}$ (0.19 in/rev) (for size 1, 2 and 3)					B						1
	$10 \mathrm{~mm} / \mathrm{rev}$ (0.39 in/rev) (for size 1, 2 and 3)					C						1
	$16 \mathrm{~mm} / \mathrm{rev}$ (0.63 in/rev) (for size 2)					D						1
	$20 \mathrm{~mm} / \mathrm{rev}$ (0.79 in/rev) (for size 3)					E						1
Stroke (3)	State the length in mm						-**					1
Sensors	Two PNP sensors as normally closed contacts, not connected (4)							A				1
	Two PNP sensors as normally closed contacts, not connected (5)							B				1
	Two PNP sensors as normally closed contacts, connected							C				1
	Without sensors							N				1
Type of carriage	Type 1								1			1
Axis options	With bellow									B		1
	Without bellow									N		1
Mounting options for motor (6)	Straight mounted										S	1
	With mounted motor, driven by a belt drive above										0	1
	With mounted motor, driven by a belt drive below										U	1
	With mounted motor, driven by a belt drive left										L	1
	With mounted motor, driven by a belt drive right										R	1
	With shaft										N	1

(1) All technical data (characteristics, dimensions, etc.) for Lexium TAS4 linear tables are available on the product data sheet.
(2) For the second part of the reference, see page 25.
(3) For the min. and max. stroke per size, refer to the mechanical characteristics of the linear tables (see page 23)
(4) Supplied with a $5 \mathrm{~m}(16.40 \mathrm{ft})$ cable with flying leads at one end.
(5) Supplied with a 0.2 m (0.66 ft) cable equipped with an M8 connector. For sensor extension cable, refer to accessories (see page 55).
(6) For the possible mounting options see the following pictures:

Straight mounted	Driven by a belt drive				With shaft
TAS4...S/...	TAS4...O/...	TAS4...U/...	TAS4...L/...	TAS4...R/...	TAS4...N/XXX

Lexium TAS

Linear tables with movable carriage and fixed axis profile
 Lexium TAS4 linear tables

References (continued) (1)						
To order Lexium TAS4 linear table, complete each reference by replacing the " \cdot ":						
Example: TAS42SBD0500A1B + BMH0702P01A2A	3S (2)/H70	(2)/	$\bullet \bullet$	\bullet	+	\ldots
Motor interface	Stepper motors BRS 368	1	V8			
	Stepper motors BRS 397, 39A	1	V9			
	Stepper motors BRS 39B	1	vo			
	Stepper motors BRS 3AC, 3AD	1	V1			
	Integrated drive with stepper motor ILS $\bullet \bullet 571,572$	1	16			
	Integrated drive with stepper motor ILS $\bullet \bullet 573$	1	17			
	Integrated drive with stepper motor ILS \bullet 851, 852	1	19			
	Integrated drive with stepper motor ILS $\bullet \bullet 853$	1	18			
	Integrated drive with brushless DC motor ILE $\bullet 66$ with spur wheel gear	1	E7			
	Integrated drive with servo motor ILA $\bullet \bullet 57$	1	A6			
	Servo motors BSH/SH3 0401, 0402	1	H0			
	Servo motors BSH/SH3 055	1	H5			
	Servo motors BSH/BMH/BMI/MH3/SH3/ILM 0701, 0702	1	H7			
	Servo motors BSH/BMH/BMI/MH3/SH3/ILM 0703	1	H8			
	Servo motors BSH/BMH/BMI/MH3/SH3/LLM 1001, 1002, 1003	1	H1			
	Servo motors BSH 1004	1	H4			
	Servo motors BSH/BMH/MH3/SH3/LLM 1401, 1402, 1403, 1404	1	H2			
	Servo motors BCH2•BA5, 01	1	C1			
	Servo motors BCH2•D 02, 04	1	C2			
	Servo motors BCH2•F 04	1	C3			
	Servo motors BCH2^F 07	1	C4			
	Servo motors BCH2•H 10, 20	1	C5			
	Servo motors BCH2•M 08	1	C6			
	Servo motors BCH2•M 03, 05, 06, 10, 09, 15, 20	1	C7			
	Servo motors BCH2•R20, 30, 35, 45	1	C8			
	Third-party motor without mounting by Schneider Electric (motor drawing required)	1	YY			
	Third-party motor with mounting by Schneider Electric (motor drawing required; motor must be provided)	1	ZZ			
	Without motor	1	XX			
Motor orientation (3)	$0{ }^{\circ}$	1		3		
	90°	1		0		
	180°	1		9		
	270°	1		6		
	Without motor	1		X		
Motor reference	State the complete motor reference at the end of the reference, in plain text. Example: BMH0702P01A2A					\ldots

(1) Technical data (characteristics, dimensions, etc.) for Lexium TAS4 linear tables are available on the product data sheet.
(2) For the first part of the reference, see page 24.
(3) For further information, refer to motor orientation (see below)

Lexium CAS, CAR
 Cantilever axes with moveable axis profile or end plates and fixed drive block
 Lexium CAS4 cantilever axes

Lexium CAS4 cantilever axes with motor and gearbox mounted

Presentation (1)

Lexium CAS4 are ready-to-install cantilever axes with toothed belt drive and one linear guide in four sizes. In contrast to the portal axes, the carriage and the drive block are fixed in place. The load is mounted on the movable axis profile or on one of the two end plates attached to the axis profile. The cantilever axes are ideal for lifting heavy loads with short and long strokes.
■ The medium speeds and high accelerations of the Lexium CAS4 cantilever axes enable short positioning times. The high feed forces with good repeatability are made possible by the steel tension members in the toothed belt. The fabric coating of the toothed belt ensures friction-optimized in and out toothing and thus quiet and smooth movement.

- Two types of guides are available for transmitting the load to the axis profile designed using FEM:
- The double ball guide is particularly suitable for applications with high force and torque loads.
- The roller guide is a cost-optimized guide and is suitable for applications with lower force and torque loads.
■ The individual forces (Fx, Fy, Fz) and torques (Mx, My, Mz) of the Lexium CAS4 cantilever axes are designed for a long service life of $15,000 \mathrm{~km}$ (9,321 miles). If the specified forces and torques are not reached, the service life of the Lexium CAS4 cantilever axes increase.

■ The threads in the carriage can be used to fasten the Lexium CAS4 cantilever axes. The cantilever axes are typically used vertically, but can also be mounted horizontally, laterally or overhead. The permissible forces and torques do not change.

- The Lexium CAS4 cantilever axes are optionally available with a cover strip to protect internal components, such as linear guide. Furthermore, an antistatic toothed belt and various sensors can be selected as options.
The Lexium CAS4 cantilever axes can be combined with all motors and / or gearboxes offered by Schneider Electric. The mounting of third-party motors and / or third-party gearboxes is also possible.

Applications

Applications with the following requirements

- Loop-back movement within a work area: pusher, etc.
- High feed forces: clamping, cutting, etc.
- Positioning over long distances: material handling, etc.

Special product features

- Stroke deliverable per millimeter
- End plates and carriage with threaded holes and centering for reproducible load mounting
■ Exchangeable grease nipples, for example to mount an automatic lubrication system
- Easy maintenance due to lubrication at each stroke position and grease nipples on both sides of the carriage
- Motor and gearbox assembly via flexible coupling system on all four sides of the end blocks
- Sensors movable in T-slot
- Customized special solutions on request

[^5] the product data sheet.

Description, characteristics

Lexium CAS, CAR

Cantilever axes with moveable axis profile or end plates and fixed drive block
 Lexium CAS4 cantilever axes

Mechanical characteristics (1)
Force and torque (Fx, Fy, Fz, Mx, My, Mz) are calculated for a service life of 15,000 km (9,321 miles)

Type of cantilever axis		CAS41BR	CAS42BR	CAS42BB	CAS43BR	CAS43BB	CAS44BB
Axis profile cross-section (width \times height)	mm (in)	$\begin{aligned} & \text { Size 1: } 40 \times 40 \\ & (1.58 \times 1.58) \end{aligned}$	Size 2: $60 \times 60(2.36 \times 2.36)$		Size 3: $80 \times 80(3.15 \times 3.15)$		$\begin{aligned} & \text { Size 4: } 110 \times 110(4.33 \\ & \times 4.33) \end{aligned}$
Type of mechanical drive element		Toothed belt					
Type of guide		Roller guide		Ball guide	Roller guide	Ball guide	
Feed per revolution	mm/rev (in/rev)	84 (3.31)	155 (6.10)		205 (8.07)		264 (10.39)
Max. feed force (Fx) (4)	N (lbf)	250 (56.20)	650 (146.12)		900 (202.32)		2,150 (483.33)
Max. speed (3)	m / s (ft/s)	3 (9.84)					
Max. acceleration (3)	$\mathrm{m} / \mathbf{s}^{2}$ (ft/s ${ }^{2}$)	20 (65.62)		50 (164.04)	20 (65.62)	50 (164.04)	
Max. drive torque (4)	Nm (lbf/in)	3.5 (30.97)	16 (141.61)		30 (265.52)		90 (796.56)
Max. force (Fy) (4)	N (Ibf)	930 (209.07)		3,540 (795.82)	2,430 (546.28)	5,550 (1,247.68)	7,890 (1,773.74)
Max. force (Fz) (4)		600 (134.88)		3,540 (795.82)	1,430 (321.47)	5,550 (1,247.68)	7,890 (1,773.74)
Max. torque (My) (4)	Nm (lbf/in)	7 (61.95)	13 (115.05)	24 (212.41)	40 (354.02)	53 (469.08)	85 (752.31)
Max. torque (Mz) (4)		24 (212.41)	29 (256.67)	250 (2,212.68)	85 (752.31)	487 (4,310.31)	1,021 (9,036.61)
Max. torque (Mz) (4)		37 (327.47)	45 (398.28)	250 (2,212.68)	144 (1,274.50)	487 (4,310.31)	1,021 (9,036.61)
Min....max. stroke (5)	mm (in)	$\begin{aligned} & 125 \ldots . .400 \\ & (4.92 \ldots 15.75) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l} 125 \ldots . .600 \\ (4.92 \ldots 23.62) \end{array}$	$\begin{array}{\|l\|} \hline 9 \ldots 700 \\ \text { (0.35...27.56) } \end{array}$	$\begin{array}{\|l\|} \hline 175 \ldots . .800 \\ (6.89 \ldots . .31 .50) \end{array}$	$\begin{array}{\|l\|} \hline 11 \ldots 1,000 \\ \text { (0.43...39.37) } \end{array}$	$\begin{aligned} & 13 \ldots 1,800 \\ & (0.51 \ldots 70.87) \\ & \hline \end{aligned}$
Repeatability	mm (in)	\pm 0.05 ($\pm 0.002)$					
Typical payloads (6)	kg/lb	$6(13,23)$	$10(22,04)$	$20(44,09)$	$15(33,07)$	$30(66,14)$	$60(132,28)$

(1) Technical data (characteristics, dimensions, etc.) for Lexium CAS4 cantilver axes are available on the product data sheet.
(2) Description of Lexium CAS4 cantilever axes; the configuration options selected will determine whether or not certain components are included.
(3) Depending on load and stroke.
(4) Forces and torques decrease at increasing speeds. If several forces (Fy, Fz) and torques (Mx, My, Mz) acting at the same time, refer to the hardware guide. (5) Min. stroke required for the lubrication of the linear guide. For information about greater strokes for ball guides, contact your Schneider Electric representative. (6) Values can also be exceeded. Refer to max. force (Fx) value, contact your Schneider Electric representative.

Forces and torques

Lexium CAS, CAR
 Cantilever axes with moveable axis profile or end plates and fixed drive block Lexium CAS4 cantilever axes

(1) Technical data (characteristics, dimensions, etc.) for Lexium CAS4 cantilever axes are available on the product data sheet.
(2) For the second part of the reference, see page 29.
(3) For the min. and max. stroke per size, refer to the mechanical characteristics of the cantilever axes (see page 27).
(4) Supplied with a $0.1 \mathrm{~m}(0.33 \mathrm{ft})$ cable equipped with an M8 connector. For sensor extension cable, refer to accessories (see page 55).
(5) For the possible mounting options see the following pictures:

Lexium CAS, CAR

Cantilever axes with moveable axis profile or end
plates and fixed drive block
Lexium CAS4 cantilever axes

Lexium CAS, CAR
 Cantilever axes with moveable axis body or end plates and fixed drive block

Lexium CAR4 cantilever axes

Lexium CAR40R cantilever axes with motor mounted

Lexium CAR4.B cantilever axes with motor and gearbox mounted

Presentation (1)

Lexium CAR4 are ready-to-install cantilever axes with toothed belt or gear rack drive and two linear guides in five sizes. In contrast to the portal axes, the axis body is fixed in place. The load is mounted on one of the two movable end plates. The cantilever axes are ideal for lifting medium loads with medium strokes.
■ The medium speeds and accelerations of the Lexium CAR4 cantilever axes enable short positioning times. The medium feed forces with good repeatability are made possible by the steel tension members in the toothed belt.

- One type of guide is available for transmitting the load to the axis body:
- The linear ball bearing guide is particularly suitable for applications with low to medium force and torque loads.
■ The individual forces (Fy, Fz) and torques (Mx, My, Mz) of the Lexium CAR4 cantilever axes are designed for a long service life of $15,000 \mathrm{~km}$ (9,321 miles). If the specified forces and torques are not reached, the service life of the Lexium CAR4 cantilever axes increase.
■ The threads or the T-slots in the axis body can be used to fasten the Lexium CAR4 cantilever axes. The cantilever axes are typically used vertically, but can also be mounted horizontally, laterally or overhead. The permissible forces and torques do not change.
- The Lexium CAR4 cantilever axes are optionally available with antistatic toothed belt and various sensors.
- The Lexium CAR4 cantilever axes can be combined with all motors and / or gearboxes offered by Schneider Electric. The mounting of third-party motors and / or third-party gearboxes is also possible.

Applications

Applications with the following requirements:

- High-speed positioning for short working distances: material handling, etc.
- High feed forces: clamping, assembly, etc.

Special product features

- Stroke deliverable per millimeter
- Low moving net mass
- End plates with threaded holes and centering for reproducible load mounting
- Linear ball bearing guide lubricated for life
- Motor and gearbox assembly via flexible coupling system
- Customized special solutions on request
(1) Technical data (characteristics, dimensions, etc.) for Lexium CAR4 cantilever axes are available on the product data sheet.

Lexium CAS, CAR

Cantilever axes with moveable axis body or end plates and fixed drive block

Lexium CAR4 cantilever axes

Description (1) (2)

CAR40 with gear rack

CAR41, CAR42, CAR43, CAR44 with toothed belt

1 Axis body including rack pinion with hollow shaft
2 Linear ball bearing (two per axis)
3 Sensor with cable and connector (two per axis, optional equipment)
4 Sensor holder (two per axis)
5 Guide rod
6 End plate with counterbore and centering for reproducible load mounting (two per axis)
7 Rubber buffer (two per axis)
8 Gear rack
9 Slide bearing (two per axis)
10 Threaded holes and centering for mounting the axis (on one side)
11 Coupling housing (optional equipment)
12 Adaptation plate (optional equipment)
13 Motor (optional equipment)

1 Axis body including toothed belt pulley with hollow shaft
2 Threaded holes and centering for mounting the axis (CAR41, on one side and on the back) T-slots for mounting the axis (CAR42, CAR43, CAR44, on both sides and on the back)
3 Linear ball bearing (four per axis)
4 Guide rod (two per axis)
5 End plate with threaded holes, counterbore and centering for reproducible load mounting (two per axis)
6 Contact block (two per axis)
7 Toothed belt tensioner (two per axis)
8 Toothed belt
9 Sensor with cable and connector (two per axis, optional equipment)
10 Rubber buffer (two per axis, inside axis body)
11 Axis body adapter plate
12 Coupling housing (optional equipment)
13 Adaptation plate (optional equipment)
14 Gearbox (optional equipment)
15 Motor (optional equipment)

Mechanical characteristics (1)
Force and torque (Fx, Fy, Fz, Mx, My, Mz) are calculated for a service life of 15,000 km (9,321 miles)

Type of cantilever axis		CAR40RC	CAR41BC	CAR42BC	CAR43BC	CAR44BC
Axis body cross-section (width x height)	mm (in)	$\begin{aligned} & \text { Size 0: } 66 \times 30 \\ & (2.6 \times 1.18) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Size 1: } 80 \times 30 \\ & (3.15 \times 1.18) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Size 2: } 100 \times 40 \\ & (3.9 \times 1.57) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Size 3: } 120 \times 50 \\ & (4.7 \times 1.97) \end{aligned}$	$\begin{array}{\|l} \text { Size 4: } 160 \times 50 \\ (6.3 \times 1.97) \end{array}$
Type of mechanical drive element		Gear rack	Toothed belt			
Type of guide		Linear ball bearing guide				
Feed per revolution	$\mathrm{mm} / \mathrm{rev}$ (in/rev)	50 (1.97)	75 (2.95)	100 (3.94)	100 (3.94)	100 (3.94)
Max. feed force (Fx) (4)	N (Ibf)	80 (17.98)	125 (28.10)	435 (97.79)	535 (120.27)	705 (158.49)
Max. speed (3)	m / s (ft/s)	3 (9.84)				
Max. acceleration (3)	$\mathrm{m} / \mathrm{s}^{2}\left(\mathrm{ft} / \mathrm{s}^{2}\right)$	20 (65.62)				
Max. drive torque (4)	Nm (lbf/in)	0.6 (5.31)	1.5 (13.27)	7 (61.95)	8.5 (75.23)	11.5 (101.78)
Max. force (Fy) (4)	N (lbf)	160 (35.96)	210 (47.20)	290 (65.19)	460 (103.41)	950 (213.56)
Max. force (Fz) (4)		130 (29.22)	180 (40.46)	250 (56.20)	400 (89.92)	820 (184.34)
Max. torque (Mx) (4)	Nm (lbf/in)	1.9 (16.81)	5.1 (45.13)	9 (79.65)	16 (141.61)	45 (398.28)
Max. torque (My) (4)		2.8 (24.78)	6.7 (59.29)	21 (185.86)	34 (300.92)	85 (752.31)
Max. torque (Mz) (4)		3.5 (30.97)	7.8 (69.03)	25 (221.26)	39 (345.17)	100 (885.07)
Min. ... Max. stroke (5)	mm (in)	8... 150 (0.31...5.90)	8... 200 (0.31...7.87)	10... 300 (0.39...11.81)	12... 400 (0.47...15.74)	14...500 (0.55...19.68)
Repeatability	mm (in)	± 0.05 (± 0.002)				
Typical payload (6)	kg (lb)	1 (2.20)	3(6.61)	5 (11.02)	10 (22.04)	18 (39.68)

(1) Technical data (characteristics, dimensions, etc.) for Lexium CAR4 cantilever axes are available on the product data sheet.
(2) Description of Lexium CAR4 cantilever axes; the configuration options selected will determine whether or not certain components are included.
(3) Depending on load and stroke.
(4) Forces and torques decrease at increasing speeds. If several forces (Fy, Fz) and torques (Mx, My, Mz) acting at the same time, refer to the hardware guide.
(5) Min. stroke required for the lubrication of the linear guide. For information about greater strokes, contact your Schneider Electric representative
(6) Values can also be exceeded. Refer to max. force (FX) value, contact your Schneider Electric representative.

Forces and torques

Lexium CAS, CAR
 Cantilever axes with moveable axis body or end plates and fixed drive block

Lexium CAR4 cantilever axes

References (1)											
To order Lexium CAR4 ca	tilever axes, complete each reference by replacing the "." :										
Example: CAR42BCM0150A1N	R/... (2) CAR4	-	-	C	M	$\bullet \bullet \bullet \bullet$	-	1	-	-	/(2)
Size (axis body cross-section)	$66 \times 30 \mathrm{~mm}$ ($2.6 \times 1.18 \mathrm{in}$)	0									1
	$80 \times 30 \mathrm{~mm}$ ($3.15 \times 1.18 \mathrm{in}$)	1									1
	$100 \times 40 \mathrm{~mm}$ ($3.9 \times 1.57 \mathrm{in}$)	2									1
	$120 \times 50 \mathrm{~mm}$ ($4.7 \times 1.97 \mathrm{in}$)	3									1
	$160 \times 50 \mathrm{~mm}$ ($6.3 \times 1.97 \mathrm{in}$)	4									1
Type of mechanical drive	Gear rack (for size 0)		R								1
	Toothed belt (for size 1, 2, 3, 4)		B								1
Type of guide	Linear ball bearing guide			C							1
Feed per revolution	$50 \mathrm{~mm} / \mathrm{rev}$ (1.97 in/rev) (for size 0				M						1
	$75 \mathrm{~mm} / \mathrm{rev}$ (2.95 in/rev) (for size 1)				M						1
	$100 \mathrm{~mm} / \mathrm{rev}$ ($3.9 \mathrm{in} / \mathrm{rev}$) (for size 2, 3, 4)				M						1
Stroke (3)	State the length in mm					-**					1
Sensors (4)	Two PNP sensors as normally closed contacts, not connected						A				1
	Two PNP sensors as normally closed contacts, connected						B				1
	Two NPN sensors as normally closed contacts, not connected						E				1
	Two NPN sensors as normally closed contacts, connected						F				1
	Two NPN sensors as normally open contacts, not connected						G				1
	Two NPN sensors as normally open contacts, connected						H				1
	Without sensors, with contact plate						N				1
Type of axis body	Type 1							1			1
Axis options	Antistatic toothed belt (for size 2, 3, 4)								A		1
	Increased corrosion resistance (for size 1, 2, 3, 4)								C		1
	Increased corrosion resistance, antistatic toothed belt (for size 2, 3, 4)								E		1
	Without								N		1
Mounting options for motor	Hollow shaft									H	1
and/or gearbox	On right-hand side									R	1

(1) Technical data (characteristics, dimensions, etc.) for Lexium CAR4 cantilever axes are available on the product data sheet.
(2) For the second part of the reference, see page 33.
(3) For the min. and max. stroke per size, refer to the mechanical characteristics of the cantilever axes (see page 31).
(4) Supplied with a 0.1 m (0.33 ft) cable equipped with an M8 connector. For sensor extension cable, refer to accessories (see page 55).
(5) For the possible mounting options see the following pictures:

Hollow shaft CAR4...H/XXXXXXX	Right-hand side CAR4...R/...

Lexium CAS, CAR

Cantilever axes with moveable axis body or end plates and fixed drive block

Lexium CAR4 cantilever axes

Lexium CAS2 telescopic axes with motor and gearbox mounted

Presentation (1)

Lexium CAS2 is a read y-to-install telescopic axis with toothed belt drive and four linear guides with a telescopic carriage. In contrast to the portal axes, the drive block of the telescopic axis is fixed in place. The load is mounted on the moveable telescopic carriage, which in turn is located on the also moveable axis profile. Due to this design, the total length is shorter than the stroke for strokes bigger than 1 m , as the total length only increases by half the stroke. The telescopic axis is ideally suited for the transport of medium loads with medium strokes.

- The medium speeds and accelerations of the Lexium CAS2 telescopic axes enable short positioning times. The medium feed forces with good repeatability are made possible by the steel tension members in the toothed belt.
- One type of guide is available for transmitting the load to the axis profile:
- The double recirculating ball bearing guide is particularly suitable for applications with lateral torsional torque (Mx) and medium force and torque loads.
- The individual forces (Fx, Fy, Fz) and torques (Mx, My, Mz) of the Lexium CAS2 telescopic axes are designed for a long service life of $15,000 \mathrm{~km}$. If the specified forces and torques are not reached, the service life of the Lexium CAS2 telescopic axes increase.
- The T-slots in the carriage of the drive block can be used to fasten the Lexium CAS2 telescopic axes. The telescopic axis is typically used horizontally, but can also be mounted vertically, laterally or overhead. The permissible forces and torques do not change.
- The Lexium CAS2 telescopic axes are available with different carriage lengths. - The Lexium CAS2 telescopic axes can be combined with all motors and / or gearboxes offered by Schneider Electric. The mounting of third-party motors and / or third-party gearboxes is also possible.

Applications

Applications requiring positioning over long distances where space is at a premium:

- Material handling
- Stock transporters
- Transfer machines
- Etc.

Special product features

- Stroke deliverable per millimeter
- Double stroke length with single total length increase
- Low moving net mass
- Easy maintenance due to lubrication at each stroke position
- Sensor contact block movable in T-slot
- Customized special solutions on request
(1) Technical data (characteristics, dimensions, etc.) for Lexium CAS2 telescopic axes are available on the product data sheet.

Lexium CAS, CAR

Cantilever axes with moveable axis profile or end plates and fixed drive block Lexium CAS2 telescopic axes

Description (1) (2)

Mechanical characteristics (1)
Force and torque (Fx, Fy, Fz, Mx, My, Mz) are calculated for a service life of 30,000 km (18,641 miles)

(1) Technical data (characteristics, dimensions, etc.) for Lexium CAS2 telescopic axes are available on the product data sheet.
(2) Description of Lexium CAS2 telescopic axes; the configuration options selected will determine whether or not certain components are included.
(3) Forces and torques decrease at increasing speeds. If several forces (Fy, Fz) and torques (Mx, My, Mz) acting at the same time, refer to the hardware guide.
(4) Depending on load and stroke.
(5) Min. stroke required for the lubrication of the linear guide. For information about greater strokes for ball guides, contact your Schneider Electric representative. (6) Values can also be exceeded. Refer to max. force (Fx) value, contact your Schneider Electric representative.

Forces and torques

Lexium CAS, CAR
 Cantilever axes with moveable axis profile or end plates and fixed drive block Lexium CAS2 telescopic axes

References (1)												
To order Lexium CAS2 telescopic axes, complete each reference by replacing the " \bullet " :												
Example: CAS24BBM1200A1NR/...(2)		CAS2	4	B	B	M	-**॰	\bullet	-	N	R	/(2)
Size (axis profile crosssection)	$120 \times 95 \mathrm{~mm}$ (4.72 $\times 3.74 \mathrm{in}$)		4									I
Type of mechanical drive element	2 toothed belts: 1 for the carriage and 1 for the axis profile			B								1
Type of guide	Double recirculating ball bearing guide				B							1
Feed per revolution	$150 \mathrm{~mm} / \mathrm{rev}$ ($5.91 \mathrm{in} / \mathrm{rev}$) (for axis profile) $300 \mathrm{~mm} / \mathrm{rev}$ ($11.81 \mathrm{in} / \mathrm{rev}$) (for axis carriage)					M						1
Stroke (3)	State the length in mm						$\bullet \bullet \bullet \bullet$					1
Sensors (4)	Two PNP sensors as normally closed contacts, not connected							A				1
	Two PNP sensors as normally closed contacts, connected							B				1
	Without sensors, with contact plate							N				1
Type of carriage	Type 1								1			1
	Type 2								2			1
Axis options	Without option									N		1
Mounting options for motor and/or gearbox (5)	On right-hand side										R	1

(1) Technical data (characteristics, dimensions, etc.) for Lexium CAS2 telescopic axes are available on the product data sheet.
(2) For the second part of the reference, see page 37.
(3) For the min. and max. stroke per size, refer to the mechanical characteristics of the telescopic axes (see page 35).
(4) Supplied with a $0.1 \mathrm{~m}(0.33 \mathrm{ft})$ cable equipped with an M8 connector. For sensor extension cable, refer to accessories (see page 55). (5) For the possible mounting options see the following pictures:

Right-hand side

CAS2...R/...

Lexium CAS, CAR

Cantilever axes with moveable axis profile or end plates and fixed drive block Lexium CAS2 telescopic axes

Lexium MAX

Cartesian multi axes systems for 1-, 2-, 3-dimensional
positioning solutions

Axis type	Double portal axes		Linear positioners	Portal robots	
Number of movement directions	1		2		3
Typical direction of movement	Horizontal: Combination of two parallel X axes		Horizontal and vertical: Combination of one X - axis and one Z - axis	Horizontal: Combination of one X - and one Y - axis	Horizontal and vertical: Combination of two perpendicular axes X - and Y - and one Z - axis
Fastening of the load	On both carriages		On the side or on the end blocks of the Z - axis profile	On the Y - xxis carriage	On the side or on the end blocks of the Z - axis profile
Moving part	Carriage				
Multi axes system type	PAS4 \bullet P axes + PAS4 \bullet H support axis (driven by the load)	PAS4•B + PAS4•B axes (shaft-driven)	$\begin{aligned} & \text { = MAXH + CAS4 axes } \\ & \text { MAXH + CAR4 axes } \end{aligned}$	$\begin{aligned} & \text { MAXS + MAXH axes } \\ & \text { MAXS + PAS4॰B axes } \end{aligned}$	$\begin{aligned} & \text { MAXS + MAXH + CAS4 axes } \\ & \text { MAXS + MAXH + CAR4 axes } \end{aligned}$
Type of mechanical drive element	x : Toothed belt on one axis	X: Toothed belt on both axes	X: Toothed belt on one axis Z: Toothed belt	X : Toothed belt on both axes Y : Toothed belt on one axis	X: Toothed belt on both axes Y : Toothed belt on one axis Z: Toothed belt
Type of guide	Recirculating ball bearing guide or roller guide				

Main characteristics
Available sizes

- High acceleration - High speed - Long stroke length - Certified for Cleanrooms with ISO class 6 (ISO14644- 1)	- High precision movement (positioning, guiding) - High feed forces
Size 1: $40 \times 40 \mathrm{~mm}$ cross section (1.57 x 1.57 in) Size 2: $60 \times 60 \mathrm{~mm}$ cross section ($2.36 \times 2.36 \mathrm{in}$) Size 3: $80 \times 80 \mathrm{~mm}$ cross section (3.15 $\times 3.15 \mathrm{in}$) Size 4: $110 \times 110 \mathrm{~mm}$ cross section ($4.3 \times 4.3 \mathrm{in}$)	Size 1: $40 \times 40 \mathrm{~mm}$ cross section (1.57 x 1.57 in) Size 2: $60 \times 60 \mathrm{~mm}$ cross section $(2.36 \times 2.36 \mathrm{in})$ Size 3: $80 \times 80 \mathrm{~mm}$ cross section (3.15 $\times 3.15 \mathrm{in}$) Size 4: $110 \times 110 \mathrm{~mm}$ cross section (4.3 x 4.3 in)
$9 . . .5,500 \mathrm{~mm}$ (0.35... 216.53 in)	
-	

Choice of guide type: Ball guide (for applications requiring high forces and torques) or roller guide (simp
cost-effective solution)

- Wide range e f sensors for the limit switch function
- Choice of carriage types for adapting the load
- Choice of arriage types for ad
Option to add carriages
Increased corrosion resistance

Option to ada c

- Increased corro
- Anti-static belt
- Cover strip
Several diferent motor mounting options
- Variable distance between the two axes

Lexium MAX
Lexium MAX
Cartesian multi axes systems for 1, 2 , 3 -dimensional positioning solutions

| MAXH | MAXS | MAXP | MAXRC2 | MAXRO3 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 42 | 42 | 48 | 50 | 50 |

Lexium MAX

Cartesian multi axes systems for 1-, 2-, 3-dimensional
positioning solutions
Combinations of drive units and multi-axes

Drive element		Double portal axes				Planetary gearboxes (1)			
	Type	MAXH41 MAXS4	MAXH42 MAXS42	MAXH43 MAXS43	MAXH44 MAXS44	PLE40 / WPLE40	PLE60 / WPLE60	PLE80 / WPLE80	PLE120/WPLE120
Stepper motors	BRS368								
	BRS397								
	BRS39A								
	BRS39B								
	BRS3AC								
	BRS3AD								
$\begin{aligned} & \text { Integrated stepper } \\ & \text { motors } \end{aligned}$	LLS10571								
	ILS10572								
	ILS10573								
	ILS10851								
	ILS10852								
	LLS10853								
$\begin{aligned} & \text { Integrated servo } \\ & \text { motors } \\ & \hline \end{aligned}$	ILA10571								
	ILA10572								
Integrated DC-motors with mountedgearbox	LLE1066100001								
	\|LE1066100002								
	ILE10661000004								
Servo motors	BSH/SH3 0401								
	BSH/SH3 0402								
	BSH/SH3 0551								
	BSH/SH3 0552								
	BSH/SH3 0553								
	BSH/BMH/--/MH3/SH3/LM 0701								
	BSH/BMH/BMi/MH3/SH3/LLM 0702								
	BSH/BMH/BMi/MH3/SH3/LLM 0703								
	BSH/BMH/--/MH3/SH3/LM 1001								
	BSH/BMH/BMi/MH3/SH3/LLM 1002								
	BSH/BMH/BMi / MH3/SH3/LLM 1003								
	BSH/---1--/--/SH3/---1004								
	BSH/BMH/ ---/MH3/SH3/LLM 1401								
	BSH/BMH/BMi/MH3/SH3/LLM 1402								
	BSH/BMH/ ---/ / H 3 / SH3/---1403								
	BSH/---/--/ - / SH3/--. 1404								
Servo motors BCH2	BCH2MEA53								
	BCH2MB013								
	BCH2LD023								
	BCH2LF043								
	BCH21F073								
	BCH2LH103								
	BCH2MM052								
	BCH2MM031								
	BCH2MM102								
	BCH2HM102								
	BCH2MM081								
	BCH2MM061								
	BCH2MM091								
	BCH2MM152								
	BCH2LH203								
	BCH2MM202								
	BCH2MR202								
	BCH2HR202								
	BCH2MR302								
	BCH2MR301 BCH2MR352								
	BCH2MR352 BCH2MR451								
$\begin{aligned} & \hline \begin{array}{l} \text { Planetary } \\ \text { gearboxes (1) } \end{array} \end{aligned}$	PLE40/WPLE40								
	PLE60/WPLE60								
	PLE80/WPLE80								
	PLE120 / WPLE120								
(1) Planetary gearboxes from company Neugart GmbH.									

Presentation (1)

Lexium MAXH and Lexium MAXS double portal axes are linear motion axes. They consist of two PASB portal axes mounted in parallel with:

- First axis (1) driven by drive unit (2)
- Second axis (3) driven by:
- MAXH: the load mounted on the two carriages (4)
- MAXS: the synchronous shaft (5)

The carriages are driven by a toothed belt, available with either a roller guide or a ball guide.

- MAX $\bullet 2 B B, M A X \bullet 3 B B$ and MAX $\bullet 4 B B$ axes, with a ball guide, are particularly suitable for applications requiring high forces and significant torque.
The roller guides on MAX $\bullet 1 B R$, MAX $\bullet 2 B R$ and MAX $\bullet 3 B R$ axes offer a simple and cost-effective guiding solution for other applications.
- Lexium MAXH / MAXS double portal axes can provide a solution to applications requiring positioning of heavy loads over a long stroke with a high dynamic response.
■ Lexium MAXH and Lexium MAXS double portal axes offer different configuration options, including axis length, different types of sensor for the limit switch function, addition of a cover strip, the choice between several types and sizes of carriage, the option of having up to three carriages, an anti-static toothed belt, and an anticorrosion version (see page 45).
- Schneider Electric offers numerous drive units for driving Lexium MAXH and Lexium MAXS axes (see pages 40 and 46).
Third-party drive units can also be used under certain conditions. Contact our Customer Care Center for further details.

Applications

Applications with the following requirements

- Positioning of heavy loads and/or involving large surface areas: material handling, etc.
- Positioning over long distances: material handling, Pick \& Place, etc.

Special product features

- Profiles with T-slots on 3 sides for simple integration into existing structures
- Carriage with centering tapped holes for mounting the load

■ Grease nipples accessible on each side of the carriages to simplify routine maintenance
■ Quick-coupling system for easy motor assembly

- Stroke in various lengths available per millimeter
- Option to position sensors anywhere along the profile thanks to the T-slots
(1) Technical data (characteristics, dimensions, etc.) for Lexium MAXH/MAXS double portal axes are available on the product data sheet. The load, force and torque data indicated in all the documents relates to carriages mounted on a rigid mechanical structure with a centrally mounted load.

Lexium MAX

Cartesian multi axes systems for 1-, 2-, 3-dimensional positioning solutions
 Lexium MAXH / MAXS double portal axes

Mechanical characteristics (1)							
Force and torque (Fx, Fy, Fz, Mx, My, Mz) are calculated for a service life of 30,000 km (18,641 miles)							
Type of double portal axes		MAXH41BR	MAXH42BR	MAXH42BB	MAXH43BR	MAXH43BB	MAXH44BB
Axis profile cross-section (width x height)	mm (in)	$\begin{aligned} & \text { Size 1: } 40 \times 40 \\ & (1.58 \times 1.58) \end{aligned}$	$\begin{aligned} & \text { Size 2: } 60 \times 60 \\ & (2.36 \times 2.36) \end{aligned}$		$\begin{aligned} & \text { Size 3: } 80 \times 80 \\ & (3.15 \times 3.15) \end{aligned}$		$\begin{aligned} & \text { Size 4: } 110 \times 110 \\ & (4.33 \times 4.33) \end{aligned}$
Type of mechanical drive element		Toothed belt					
Type of guide		Roller guide		Ball guide	Roller guide	Ball guide	
Feed per revolution	mm/rev (in/rev)	$\begin{aligned} & 84 \\ & (3.31) \end{aligned}$	$\begin{aligned} & 155 \\ & (6.10) \end{aligned}$		$\begin{array}{\|l\|} \hline 205 \\ (8.07) \end{array}$		$\begin{array}{\|l\|} \hline 264 \\ \text { (10.39) } \end{array}$
Max. feed force (Fx) (2)	$\begin{aligned} & \mathrm{N} \\ & \text { (lbf) } \end{aligned}$	$\begin{aligned} & 300 \\ & (67.44) \end{aligned}$	$\begin{aligned} & 800 \\ & (179.84) \end{aligned}$		$\begin{aligned} & 1,100 \\ & (247.28) \end{aligned}$		$\begin{aligned} & 2,600 \\ & (584.50) \end{aligned}$
Max. speed (3)	m/s (ft/s)	$\begin{aligned} & 8 \\ & (26.25) \end{aligned}$		$\begin{array}{\|l\|} \hline 5 \\ (16.40) \end{array}$	$\begin{array}{\|l\|} \hline 8 \\ (26.25) \end{array}$	$\begin{aligned} & 5 \\ & (16.40) \end{aligned}$	
Max. acceleration (3)	$\begin{aligned} & \mathrm{m} / \mathrm{s}^{2} \\ & \left(\mathrm{ft} / \mathrm{s}^{2}\right) \end{aligned}$	$\begin{array}{\|l\|} \hline 20 \\ (65.62) \end{array}$		$\begin{array}{\|l} 50 \\ (164.04) \end{array}$	$\begin{array}{\|l\|} \hline 20 \\ (65.62) \end{array}$	$\begin{aligned} & 50 \\ & (164.04) \end{aligned}$	
Max. drive torque (2)	Nm (lbf/in)	$\begin{aligned} & 4 \\ & (35.40) \end{aligned}$	$\begin{aligned} & 20 \\ & (177.01) \end{aligned}$		$\begin{aligned} & 36 \\ & (318.62) \end{aligned}$		$\begin{array}{\|l\|} \hline 110 \\ (973.58) \end{array}$
Max. force (Fy) (2)	$\left\lvert\, \begin{aligned} & \mathrm{N} \\ & \text { (lbf) } \end{aligned}\right.$	$\begin{aligned} & 990 \\ & (222.56) \end{aligned}$		$\begin{array}{\|l} 4,215 \\ (947.56) \end{array}$	$\begin{array}{\|l} 2,640 \\ (593.49) \end{array}$	$\begin{aligned} & 6,615 \\ & (1,487.11) \end{aligned}$	$\begin{array}{\|l} 9,405 \\ (2,114.32) \end{array}$
Max. force (Fz) (2)		$\begin{aligned} & 645 \\ & (145) \end{aligned}$		$\begin{aligned} & 4,215 \\ & (947.56) \end{aligned}$	$\begin{aligned} & 1,560 \\ & (350.70) \end{aligned}$	$\begin{aligned} & 6,615 \\ & (1,487.11) \end{aligned}$	$\begin{array}{\|l} 9,405 \\ (2,114.32) \end{array}$
Max. torque (Mx) (2) (4) Note: di: inside axis distance (mm)	Nm (lbf/in)	$\begin{aligned} & 8.6+0,22 \times \mathrm{di} \\ & (76.11+0,22 \times \mathrm{di}) \end{aligned}$	$\begin{aligned} & 12.9+0,22 \times \mathrm{di} \\ & (114.17+0,22 \times d i) \end{aligned}$	$\begin{aligned} & 84.3+1.41 \times \mathrm{di} \\ & (746.11+1.41 \times \mathrm{di}) \end{aligned}$	$\begin{aligned} & 41.6+0.52 x \mathrm{di} \\ & (368.19+0.52 \times \mathrm{di}) \end{aligned}$	$\begin{aligned} & 176.4+2.21 \times \mathrm{di} \\ & (1,561.27+2.21 \mathrm{xdi}) \end{aligned}$	$\begin{aligned} & 344.9+3.14 x \mathrm{di} \\ & (3,044.65+3.14 \mathrm{xdi}) \end{aligned}$
Min. ... max. inside axis distance (di)	mm (in)	$\begin{aligned} & 100 \ldots 300 \\ & (3.94 \ldots 11.81) \end{aligned}$	$\begin{aligned} & 110 \ldots . .400 \\ & (4.33 \ldots 15.74) \end{aligned}$		$\begin{aligned} & 120 \ldots 500 \\ & (4.72 \ldots 19.68) \end{aligned}$		$\begin{aligned} & 130 \ldots 600 \\ & (5.11 \ldots 23.62) \end{aligned}$
Max. torque (My) with carriage type 1 (2)	Nm (lbf/in)	-	$\begin{array}{\|l\|} \hline 36 \\ (318.62) \end{array}$	$\begin{aligned} & 148 \\ & (1,309.91) \end{aligned}$	$\begin{array}{\|l\|} \hline 102 \\ (902.77) \end{array}$	$\begin{aligned} & 324 \\ & (2867.64) \end{aligned}$	$\begin{array}{\|l\|} \hline 512 \\ (4,531.58) \end{array}$
with carriage type 2		$\begin{array}{\|l\|} \hline 22 \\ (194.71) \end{array}$	$\begin{array}{\|l\|} \hline 62 \\ (548.74) \end{array}$	$\begin{array}{\|l\|} \hline 388 \\ (3,434.08) \end{array}$	$\begin{aligned} & 174 \\ & (1,540.02) \end{aligned}$	$\begin{aligned} & 758 \\ & (6708.86) \end{aligned}$	$\begin{array}{\|l\|} \hline 1,310 \\ (11,594.47) \end{array}$
with carriage type 4		$\begin{array}{\|l} 56 \\ (495.64) \end{array}$	$\begin{array}{\|l} 112 \\ \text { (991.28) } \end{array}$	$\begin{array}{\|l\|} \hline 724 \\ (6,407.93) \end{array}$	$\begin{array}{\|l\|} \hline 320 \\ (2,832.23) \end{array}$	$\begin{aligned} & 1,374 \\ & (12,160.92) \end{aligned}$	$\begin{array}{\|l} 2,418 \\ (21,401.10) \end{array}$
Max. torque (Mz) with carriage type 1 (2)	Nm (lbf/in)	-	$\begin{array}{\|l} \hline 28 \\ (247.82) \end{array}$	$\begin{array}{\|l} \hline 74 \\ (654.95) \end{array}$	$\begin{aligned} & 86 \\ & (761.16) \end{aligned}$	$\begin{aligned} & 162 \\ & (1,433.82) \end{aligned}$	$\begin{array}{\|l\|} \hline 256 \\ (2,265.79) \end{array}$
with carriage type 2		$\begin{array}{\|l} 17 \\ (150.46) \end{array}$	$\begin{array}{\|l\|} \hline 48 \\ (424.83) \end{array}$	$\begin{aligned} & 194 \\ & (1,717.04) \end{aligned}$	$\begin{aligned} & 148 \\ & (1,309.91) \end{aligned}$	$\begin{aligned} & 379 \\ & (3,354.43) \end{aligned}$	$\begin{array}{\|l\|} \hline 655 \\ (5,797.23) \end{array}$
with carriage type 4		$\begin{aligned} & 43 \\ & (380.58) \end{aligned}$	$\begin{array}{\|l\|} \hline 87 \\ (770.01) \end{array}$	$\begin{array}{\|l\|} \hline 362 \\ (3,203.96) \end{array}$	$\begin{array}{\|l\|} \hline 271 \\ (2,398.55) \end{array}$	$\begin{aligned} & 687 \\ & (6,080.46) \end{aligned}$	$\begin{array}{\|l} \hline 1,209 \\ (10,700.55) \end{array}$
Min. ... max. stroke (5)	mm (in)	$\begin{aligned} & \text { 125...3,000 } \\ & (4.92 . .118 .11) \end{aligned}$	$\begin{aligned} & 125 \ldots 5,500 \\ & (4.92 \ldots 216.54) \end{aligned}$	$\begin{aligned} & 9 \ldots 5,500 \\ & (0.35 . .216 .54) \end{aligned}$	$\begin{aligned} & 175 \ldots . .5,500 \\ & (6.89 \ldots 216.54) \end{aligned}$	$\begin{aligned} & 11 \ldots . .5,500 \\ & (0.43 \ldots 216.54) \end{aligned}$	$\begin{aligned} & 13 . . .5,500 \\ & (0.51 \ldots 216.54) \end{aligned}$
Repeatability	mm (in)	$\begin{aligned} & \pm 0.1 \\ & (0.003) \end{aligned}$					

(1) Technical data (characteristics, dimensions, etc.) for Lexium MAXH double portal axes are available on the product data sheet. The load, force and torque data indicated in all the documents relates to carriages mounted on a rigid mechanical structure with a centrally mounted load.
(2) Forces and torques decrease at increasing speeds. If several forces (Fy, Fz)and torques (Mx, My, Mz) acting at the same time, refer to the hardware guide.
(3) Depending on load and stroke.
(4) These figures only apply to rigid connected carriage via adapter plate and inside axis distance (di). The plate is not included.
(5) Min. stroke required for the lubrication of the linear guide. For information about greater strokes for ball guides, contact your Schneider Electric representative

Forces and torques

 positioning solutions
Lexium MAXH / MAXS double portal axes

Mechanical characteristics (1)

Type of double portal axes		MAXS41BR	MAXS42BR	MAXS42BB	MAXS43BR	MAXS43BB	MAXS 44 BB
Axis profile cross-section (width x height)	mm (in)	$\begin{aligned} & \text { Size } 1: 40 \times 40 \\ & (1.58 \times 1.58) \end{aligned}$	$\begin{aligned} & \text { Size 2: } 60 \times 60 \\ & (2.36 \times 2.36) \end{aligned}$		$\begin{aligned} & \text { Size 3: } 80 \times 80 \\ & (3.15 \times 3.15) \end{aligned}$		$\text { Size 4: } 110 \times 110$ (4.33×4.33)
Type of mechanical drive element		Toothed belt					
Type of guide		Roller guide		Ball guide	Roller guide	Ball guide	
Feed per revolution	mm/rev (in/rev)	$\begin{aligned} & 84 \\ & (3.31) \end{aligned}$	$\begin{aligned} & 155 \\ & (6.10) \end{aligned}$		$\begin{aligned} & 205 \\ & (8.07) \end{aligned}$		$\begin{array}{\|l\|} \hline 264 \\ (10.39) \end{array}$
Max. feed force (Fx) (2)	$\begin{aligned} & \mathrm{N} \\ & \text { (lbf) } \end{aligned}$	$\begin{array}{\|l} \hline 450 \\ (101.16) \end{array}$	$\begin{array}{\|l\|} \hline 1,200 \\ (269.77) \end{array}$		$\begin{array}{\|l\|} \hline 1,650 \\ (370.93) \end{array}$		$\begin{aligned} & 3,900 \\ & (876.75) \end{aligned}$
Max. speed (3)	m/s (ft/s)	$\begin{aligned} & 8 \\ & (26.25) \end{aligned}$		$\begin{aligned} & 5 \\ & (16.40) \end{aligned}$	$\begin{array}{\|l\|} \hline 8 \\ (26.25) \end{array}$	(16.40)	
Max. acceleration (3)	$\begin{aligned} & \mathrm{m} / \mathrm{s}^{2} \\ & \left(\mathrm{ft} / \mathrm{s}^{2}\right) \end{aligned}$	$\begin{aligned} & 20 \\ & (65.62) \end{aligned}$		$\begin{aligned} & 50 \\ & (164.04) \end{aligned}$	$\begin{array}{\|l\|} \hline 20 \\ (65.62) \end{array}$	$\begin{aligned} & 50 \\ & (164.04) \end{aligned}$	
Max. drive torque (2)	Nm (lbf/in)	$\begin{array}{\|l\|} \hline 6 \\ (53.10) \end{array}$	$\begin{array}{\|l\|} \hline 30 \\ (265.52) \end{array}$		$\begin{aligned} & 54 \\ & (477.94) \end{aligned}$		$\begin{array}{\|l\|} \hline 160 \\ (1,416.11) \end{array}$
Max. force (Fy) (2)	$\begin{aligned} & \mathrm{N} \\ & \text { (lbf) } \end{aligned}$	$\begin{aligned} & 990 \\ & (222.56) \end{aligned}$		$\begin{aligned} & 4,215 \\ & (947.56) \end{aligned}$	$\begin{array}{\|l\|l} 2,640 \\ (593.49) \end{array}$	$\begin{aligned} & 6,615 \\ & (1,487.11) \end{aligned}$	$\begin{aligned} & 9,405 \\ & (2,114.32) \end{aligned}$
Max. force (Fz) (2)		$\begin{aligned} & 645 \\ & (145) \end{aligned}$		$\begin{aligned} & 4,215 \\ & (947.56) \end{aligned}$	$\begin{aligned} & 1,560 \\ & (350.70) \end{aligned}$	$\begin{aligned} & 6,615 \\ & (1,487.11) \end{aligned}$	$\begin{aligned} & 9,405 \\ & (2,114.32) \end{aligned}$
Max. torque (Mx) (2) (4) Note: di = inside axis distance (mm) (in)	Nm (lbf/in)	$\begin{aligned} & 8.6+0,22 \times \mathrm{di} \\ & (76.11+0,22 \times \mathrm{di}) \end{aligned}$	$\begin{aligned} & 12.9+0,22 \times \mathrm{di} \\ & (114.17+0,22 \times \mathrm{di}) \end{aligned}$	$\begin{aligned} & 84.3+1.41 \times \text { di } \\ & (746.11+1.41 \times \text { di) } \end{aligned}$	$\begin{aligned} & 41.6+0.52 \times \mathrm{di} \\ & (368.19+0.52 \times d i) \end{aligned}$	$\begin{aligned} & 176.4+2.21 \times \mathrm{di} \\ & (1,561.27+2.21 \mathrm{xdi}) \end{aligned}$	$\begin{aligned} & 344.9+3.14 \times \mathrm{di} \\ & (3,044.65+3.14 \times \mathrm{di}) \end{aligned}$
Min. ... max. inside axis distance (di)	mm (in)	$\begin{aligned} & 100 \ldots 1400 \\ & (3.94 \ldots 55.11) \end{aligned}$	$\begin{aligned} & 110 \ldots 1800 \\ & (4.33 \ldots 70.86) \end{aligned}$		$\begin{aligned} & 120 \ldots . .2300 \\ & (4.72 \ldots 90.55) \end{aligned}$		$\begin{aligned} & 130 \ldots 2800 \\ & (5.11 \ldots 110.23) \end{aligned}$
Max. torque (My) with carriage type 1 (2)	Nm (lbf/in)	-	$\begin{array}{\|l\|} \hline 36 \\ (318.62) \end{array}$	$\begin{aligned} & 148 \\ & (1,309.91) \end{aligned}$	$\begin{aligned} & 102 \\ & (902.77) \end{aligned}$	$\begin{aligned} & 324 \\ & (2,867.64) \end{aligned}$	$\begin{aligned} & 512 \\ & (4,531.58) \end{aligned}$
with carriage type 2		$\begin{array}{\|l} 22 \\ (194.71) \end{array}$	$\begin{array}{\|l\|} \hline 62 \\ (548.74) \end{array}$	$\begin{aligned} & 388 \\ & (3,434.08) \end{aligned}$	$\begin{array}{\|l\|} \hline 174 \\ (1,540.02) \end{array}$	$\begin{aligned} & 758 \\ & (6,708.86) \end{aligned}$	$\begin{aligned} & 1,310 \\ & (11,594.47) \end{aligned}$
with carriage type 4		$\begin{array}{\|l} 56 \\ (495.64) \end{array}$	$\begin{array}{\|l\|} \hline 112 \\ (991.28) \end{array}$	$\begin{aligned} & 724 \\ & (6,407.93) \end{aligned}$	$\begin{array}{\|l\|} \hline 320 \\ (2,832.23) \end{array}$	$\begin{aligned} & 1,374 \\ & (12,160.92) \end{aligned}$	$\begin{aligned} & 2,418 \\ & (21,401.10) \end{aligned}$
Max. torque (Mz) with carriage type 1 (2)	Nm (lbf/in)	-	$\begin{array}{\|l} 42 \\ (371.73) \end{array}$	$\begin{aligned} & 110 \\ & (973.58) \end{aligned}$	$\begin{array}{\|l\|} \hline 129 \\ (1,141.74) \end{array}$	$\begin{aligned} & 243 \\ & (2,150.73) \end{aligned}$	$\begin{array}{\|l\|} \hline 384 \\ (3,398.68) \end{array}$
with carriage type 2		$\begin{aligned} & 25 \\ & (221.26) \end{aligned}$	$\begin{aligned} & 72 \\ & (637.25) \end{aligned}$	$\begin{aligned} & 290 \\ & (2,566.71) \end{aligned}$	$\begin{array}{\|l\|} \hline 220 \\ (1,947.16) \end{array}$	$\begin{aligned} & 568 \\ & (5,027.22) \end{aligned}$	$\begin{array}{\|l\|} \hline 982 \\ (8,691.43) \end{array}$
with carriage type 4		$\begin{array}{\|l\|} \hline 64 \\ (566.44) \end{array}$	$\begin{array}{\|l\|} \hline 130 \\ (1,150.59) \end{array}$	$\begin{aligned} & 543 \\ & (4,805.95) \end{aligned}$	$\begin{array}{\|l\|} \hline 405 \\ (3,584.55) \end{array}$	$\begin{aligned} & 1,030 \\ & (9,116.26) \end{aligned}$	$\begin{aligned} & 1,813 \\ & (16,046.4) \end{aligned}$
Min. ... max. stroke (5)	mm (in)	$\begin{aligned} & 125 \ldots 3,000 \\ & (4.92 \ldots . .118 .11) \end{aligned}$	$\begin{aligned} & 125 \ldots 5,500 \\ & (4.92 . .216 .54) \end{aligned}$	$\begin{aligned} & 9 . . .5,500 \\ & (0.35 . .216 .54) \end{aligned}$	$\begin{aligned} & 175 \ldots 5,500 \\ & (6.89 \ldots 216.54) \end{aligned}$	$\begin{aligned} & 11 \ldots 5,500 \\ & (0.43 \ldots 216.54) \end{aligned}$	$\begin{aligned} & 13 . . .5,500 \\ & (0.51 \ldots 216.54) \end{aligned}$
Repeatability	mm (in)	$\begin{aligned} & \pm 0.1 \\ & (0.003) \end{aligned}$					

(1) Technical data (characteristics, dimensions, etc.) for Lexium MAXS double portal axes are available on the product data sheet. The load, force and torque data indicated in all the documents relate to carriages mounted on a rigid mechanical structure with a centrally mounted load.
(2) Forces and torques decrease at increasing speeds. If several forces (Fy, Fz) and torques (Mx, My, Mz) acting at the same time, refer to the hardware quide.
(3) Depending on load and stroke.
(4) These figures only apply to rigid connected carriage via adapter plate and inside axis distance (di). The plate is not included
(5) Min. stroke required for the lubrication of the linear guide. For information about greater strokes for ball guides, contact your Schneider Electric representative

Forces and torques

Lexium MAX

Cartesian multi axes systems for 1-, 2-, 3-dimensional positioning solutions
 Lexium MAXH / MAXS double portal axes

(1) Technical data (characteristics, dimensions, etc.) for Lexium MAXH / MAXS double portal axes are available on the product data sheet.
(2) For the second part of the reference, see page 46.
(3) For the min. and max. stroke per size, refer to the mechanical characteristics of the double portal axes (see page 43).
(4) Supplied with a $0.1 \mathrm{~m}(0.33 \mathrm{ft})$ cable equipped with an M8 connector. For sensor extension cable, refer to accessories (see page 55).
(5) Only carriages of the same type can be used. All carriages are driven.
(6) For the possible mounting options see the following pictures:

Right-hand side MAXH4..........\quad MAXH4...A.../...

Lexium MAXH / MAXS double portal axes

References (continued) (1)									
To order Lexium MAXH or Lexium MAXS double portal axes, complete each reference by replacing the " \bullet " :									
Example: MAXH42BBM1000A1NAXXXLO200 (2)/21G0H70 + PLE60 3:1 + BMH0702P01A2A		(2)!	-	\bullet	\bullet	$\bullet \bullet$	\bullet	+	\ldots
Motor and/or gearbox configuration (3)	Motor only	1	1						
	Motor and gearbox	I	2						
	Gearbox only	I	3						
	Without motor, without gearbox, with adaptation material (select motor/gearbox type)	1	4						
	Without motor, without gearbox, without adaptation material	1	X						
Gearbox interface (4)	PLE 40 - straight planetary gearbox	1		OG					
	PLE 60 - straight planetary gearbox	1		1G					
	PLE 80 - straight planetary gearbox	1		3G					
	PLE 120 - straight planetary gearbox	1		5G					
	WPLE 40 - angular planetary gearbox	1		OA					
	WPLE 60 - angular planetary gearbox	1		1A					
	WPLE 80 - angular planetary gearbox	1		3A					
	WPLE 120 - angu lar planetary gearbox	1		5A					
	Third-party gearbox without mounting by Schneider Electric (gearbox drawing required)	1		YY					
	Third-party gearbox with mounting by Schneider Electric (gearbox must be provided)	1		ZZ					
	Without gearbox	1		XX					
Gearbox orientation (3) (5)	0°	1			3				
	90°	1			0				
	180°	1			9				
	270°	1			6				
	Without gearbox	1			X				
Motor interface	Stepper motors BRS 368	1				V8			
	Stepper motors BRS 397, 39A	1				V9			
	Stepper motors BRS 39B	1				Vo			
	Stepper motors BRS 3AC, 3AD	1				V1			
	Integrated drive with stepper motor ILS $\bullet \bullet 571,572$	1				16			
	Integrated drive with stepper motor ILS $\bullet \bullet 573$	1				17			
	Integrated drive with stepper motor ILS $\bullet \bullet$ 851, 852	1				19			
	Integrated drive with stepper motor ILS $\bullet \bullet 853$	1				18			
	Integrated drive with brushless DC motor ILE $\bullet \bullet 66$ with spur wheel gear	1				E7			
	Integrated drive with servo motor ILA \bullet 57	1				A6			
	Servo motors BSH/SH3 0401, 0402	1				H0			
	Servo motors BSH/SH3 055	1				H5			
	Servo motors BSH/BMH/BMI/MH3/SH3/ILM 0701, 0702	1				H7			
	Servo motors BSH/BMH/BMI/MH3/SH3/LLM 0703	1				H8			
	Servo motors BSH/BMH/BMI/MH3/SH3/ILM 1001, 1002, 1003	1				H1			
	Servo motors BSH 1004	1				H4			
	Servo motors BSH/BMH/MH3/SH3/LLM 1401, 1402, 1403, 1404	1				H2			
	Servo motors BCH2•BA5, 01	1				C1			
	Servo motors BCH2•D 02, 04	1				C2			
	Servo motors BCH2•F 04	1				C3			
	Servo motors BCH2•F 07	1				C4			
	Servo motors BCH2•H 10, 20	1				C5			
	Servo motors BCH2@M 08	1				C6			
	Servo motors BCH2^M 03, 05, 06, 10, 09, 15, 20	1				C7			
	Servo motors BCH2 R 20, 30, 35, 45	1				C8			
	Third-party motor without mounting by Schneider Electric (motor drawing required)	1				YY			
	Third-party motor with mounting by Schneider Electric (motor drawing required; motor must be provided)	1				ZZ			
	Without motor	1				XX			
Motor orientation (3) (6)	0°	1					3		
	90°	1					0		
	180°	1					9		
	270°	1					6		
	Without motor	,					X		
Planetary gearbox gear ratio + motor reference	State the planetary gearbox gear ratio and the complete motor reference at the end of the reference, in plain text. Example: PLE60 3:1 + BMH0702P01A2A							+	...

(1) Technical data (characteristics, dimensions, etc.) for Lexium MAXH / MAXS double portal axes are available on the product data sheet.
(2) For the first part of the reference, see page 45.
(3) For further information, refer to motor and/or gearbox configuration and orientation (see page 47).
(4) Planetary gearboxes from company Neugart GmbH.
(5) In case of a straight planetary gearbox, the orientation references to the setscrew of the drive unit adaptation.
(6) With reference to the motor connectors.

Lexium MAX

Cartesian multi axes systems for 1－，2－，3－dimensional positioning solutions
Lexium MAXH／MAXS double portal axes

Motor and／or gearbox configuration and orientation
Hollow shaft at both ends
MAXH4．．．H．．．／XXXXXXX
MAXH4．．．G．．．／XXXXXXX
MAXS4．．．N．．．／XXXXXXX

Left－hand side
MAX©4 LIXXX MAXH4．．．B．．．／1XXX $\bullet \bullet \bullet$

MAX $4 . . . L . . . / 2 \bullet G \bullet \bullet \bullet \bullet$ MAXH4．．．B．．．／2•Gゃゃゃ७

MAX•4．．．L．．．／3•G・ゃゃX
MAXH4．．．B．．．／3॰Gゃゃ○X

MAX•4．．．L．．．／3•A•๑๑X MAXH4．．．B．．．／3॰Aゃゃ०X

MAX•4．．．L．．．／4••X••X MAXH4．．．B．．．／4ゃゃX॰๐X

Right－hand side
MAX•4．．．R．．．／1XXX•・ゃ MAXH4．．．A．．．／1XXXeゃ॰

MAX•4．．．R．．．／2•G・ャッ७

 MAXH4．．．A．．．／2•Gゃゃe७

MAX•4．．．R．．．／3•A॰ゃ॰X
MAX•4．．．R．．．／4・ゃX॰॰X
MAXH4．．．A．．．／4ゃゃXっ๐X
MAX॰4．．．R．．．／3॰G॰॰॰X
MAXH4．．．A．．．／3॰Gゃゃ॰X MAXH4．．．A．．．／3•A๒ゃ०X

Presentation, characteristics

Lexium MAX
 Cartesian multi axes systems for 1-, 2-, 3-dimensional positioning solutions
 Lexium MAXP linear positioners

Presentation (1)
Lexium MAXP linear positioners (1) are multi axes systems for linear motion in directions X and Z :

They consist of two axes with:

- A Lexium MAXH double portal axes providing motion in direction X (2)
- A Lexium CAS4 or Lexium CAR4 cantilever axis providing motion in direction Z (3)
Each carriage is driven by a toothed belt, available with either a roller guide or a ball guide.

Lexium MAXP linear positioners operate above or below the working area. They provide an effective solution to dynamic load handling. Depending on the model, loads can be moved as far as $5,500 \mathrm{~mm}$ (216.53 in) in direction X and $1,800 \mathrm{~mm}$ (70.86 in) in direction Z.

These linear positioners offer different configuration options for each axis, including length, choice of different sizes and types of profile, and a choice of different types of guide (see next page).
Schneider Electric offers numerous drive elements for driving Lexium MAXP linear positioners.
Since the choice and combination of these drive elements is specific to each application, you will need to contact our Customer Care Center.

Applications

Applications requiring dynamic load positioning:

- Material handling
- Pick \& Place
- Etc.

Special p uct features

- Numerous adaptation possibilities thanks to its modular design

Mechanical characteristics (1)

Type of linear positioner			MAXP12		MAXP22			
			H41BR - W41BC	H41BR - C41BR	H42BR - W42BC	H42BB - W42BC	H42BR - C42BR	H42BB - C42BB
Type of mechanical drive X and Z axes element			Toothed belt					
Type of guide	X-axis		Roller guide			Ball guide	Roller guide	Ball guide
	Z-axis		Linear ball bearing guide	Roller guide	Linear ball bearing guide		Roller guide	Ball guide
Typical payload (2)		kg (lb)	2 (4.41)	6 (13.23)	4 (8.82)	5 (11.02)	10 (22.05)	20 (44.09)
Feed per revolution	X-axis	mm/rev (in/rev)	84 (3.31)		155 (6.10)			
	Z-axis		$\begin{aligned} & 125 \ldots 3,000 \\ & (4.92 . .118 .11) \end{aligned}$		100 (3.94)		155 (6.10)	
Min. ... max. stroke (3)	X -axis	mm (in)			$\begin{array}{\|l} \hline 125 \ldots . .4,000 \\ (4.92 \ldots 157.48) \end{array}$	$\begin{array}{\|l} 9 \ldots . .4,000 \\ (0.35 \ldots 157.48) \end{array}$	$\begin{array}{\|l} 125 \ldots . .4,000 \\ (4.92 \ldots 157.48) \end{array}$	$\begin{aligned} & 9 \ldots 4,000 \\ & (0.35 \ldots 157.48) \end{aligned}$
	Z-axis	mm (in)	$8 . . .200$ $125 \ldots . .400$ $(0.31 \ldots 7.87)$ $(4.92 . .15 .75)$		10... 300 (0.39...11.81)		$\begin{aligned} & 125 \ldots . .600 \\ & \text { (4.92...23.62) } \end{aligned}$	$\begin{array}{\|l\|} 9 \ldots . .700 \\ (0.35 \ldots 27.56) \end{array}$
Repeatability		mm (in)	± 0.1 (0.003)					
Type of portal axis			MAXP32				MAXP42	
			H43BR - W44BC	H43BB - W44BC	H43BR - C43BR	H43BB - C43BB	H44BB - C44BB	
Type of mechanical drive X and Z axes element			Toothed belt					
Type of guide	$\frac{X \text {-axis }}{Z \text {-axis }}$		Roller guide	Ball guide	Roller guide	Ball guide	Ball guide	
			Linear ball bearing guide		Roller guide	Ball guide	Ball guide	
Typical payload (2)		kg (lb)	14 (30.86)	18 (39.68)	15 (33.07)	30 (66.14)	60 (132.28)	
Feed per revolution	X -axis	mm/rev (in/rev)	205 (8.07)				264 (10.39)	
	Z-axis		100 (3.94)		205 (8.07)		264 (10.39)	
Min. ... max. stroke (3)	X -axis	mm (in)	$\begin{aligned} & 175 \ldots 5,500 \\ & (6.89 \ldots 216.54) \end{aligned}$	$\begin{array}{\|l} \hline 11 \ldots 5,500 \\ (0.43 \ldots 216.54) \end{array}$	$\begin{aligned} & 175 \ldots 5,500 \\ & (6.89 \ldots 216.54) \end{aligned}$	$\begin{aligned} & 11 \ldots 5,500 \\ & (0.43 \ldots 216.54) \end{aligned}$	$\begin{aligned} & 13 . . .5,500 \\ & (0.51 \ldots 216.54) \end{aligned}$	
	Z-axis	mm (in)	14... 500 (0.55...19.69)		$\begin{aligned} & 175 \ldots . .800 \\ & (6.89 \ldots . .31 .50) \end{aligned}$	$\begin{aligned} & 11 \ldots 1,000 \\ & (0.43 \ldots 39.37) \end{aligned}$	13...1,800 (0.51...70.87)	
Repeatability		mm (in)	± 0.1 (0.003)					

(1) Technical data (characteristics, dimensions, etc.) for Lexium MAXP linear positioners are available on the product data sheet
(2) The typical payload is only a guideline and can also be exceeded depending on the application. Please contact your Schneider Electric representative for more information.
(3) Min. stroke required for the lubrication of the linear guide. For information about greater strokes for ball guides, contact your Schneider Electric representative.

Lexium MAX

Cartesian multi axes systems for 1-, 2-, 3-dimensional positioning solutions
 Lexium MAXP linear positioners

(1) Technical data (characteristics, dimensions, etc.) for Lexium MAXP linear positioners are available on the product data sheet.
(2) For the possible mounting options see the pictures below.
(3) Supplied with 2 PNP output sensors, NC contact, with a 0.1 m (0.33 ft) cable equipped with an M8 connector. For sensor extension cable, refer to accessories (see page 55).
(4) For the min. and max. stroke per size, refer to the mechanical characteristics of the linear positioners (see page 48).

(1) Technical data (characteristics, dimensions, etc.) for Lexium MAXR•2/MAXR•3 portal robots are available on the product data sheet.

Characteristics

Lexium MAX

Cartesian multi axes systems for 1-, 2-, 3-dimensional positioning solutions
 Lexium MAXR•2 / MAXR•3 portal robots

(1) Technical data (characteristics, dimensions, etc.) for Lexium MAXR•2/MAXR•3 portal robots are available on the product data sheet.
(2) The typical payload is only a guideline and can also be exceeded depending on the application. Please contact your Schneider Electric representative for more information.
(3) Min. stroke required for the lubrication of the linear guide. For information about greater strokes for ball guides, contact your Schneider Electric representative..

Lexium MAX

Cartesian multi axes systems for 1-, 2-, 3-dimensional positioning solutions
Lexium MAXR•2 / MAXR•3 portal robots

Lexium MAX

Cartesian multi axes systems for 1-, 2-, 3-dimensional positioning solutions
 Lexium MAXR•2 / MAXR•3 portal robots

(1) Technical data (characteristics, dimensions, etc.) for Lexium MAXR•3 portal robots are available on the product data sheet.
(2) For the possible mounting options see the pictures below.
(3) Each axis is supplied with 2 PNP output sensors, NC contact, with a 0.1 m (0.33 ft) cable equipped with an M8 connector.
(4) For the min. and max. stroke per size, refer to the mechanical characteristics of the portal robots (see page 51).

Left-hand side

Right-hand side
MAXR•3L-...
MAXRe3R-...

VW33MF10•e•

VW33MF010T•••

VW33MC05•0•

[^6]

VW33MFO20LD01•

VW33MF1S••A••

Locating dowels (1)									
Description	To combine with							Reference	Weight kg/lb
	Portal axes	Linear tables	Cantilever axes	Multi axes systems					
Locating dowels These adapters help to ensure accurate, reproducible positioning of the load on the carriage. They are inserted in the holes provided on the carriage. (sold in lots of 20)	PAS41B PAS42B PAD42 PAS42S	-	CAS41 CAS42 CAR40 CAR41	MAXH41 MAXS41 MAXP12 MAXR12 MAXR13 MAXH42 MAXS42 MAXP22 MAXR22 MAXR23				VW33MF020LD01	$\begin{aligned} & 0.098 \\ & 0.216 \end{aligned}$
	PAS43B PAS43S	-	CAS43 CAR42 CAR43	MAXH43 MAXS43 MAXP32 MAXR32 MAXR33				VW33MF020LD02	$\begin{aligned} & 0.107 \\ & 0.235 \end{aligned}$
	$\begin{aligned} & \text { PAS44B } \\ & \text { PAS44S } \end{aligned}$	-	$\begin{aligned} & \text { CAS44 } \\ & \text { CAR44 } \end{aligned}$	MAXH44 MAXS44 MAXP42 MAXR42 MAXR43				VW33MF020LD03	$\begin{aligned} & 0.028 \\ & 0.061 \end{aligned}$
Shaft extensi	ons (1)								
Description	To combin	with			Max.	Moment	Max. drive	Reference	Weight
	Portal axes	Linear tables	Cantilever axes	Multi axes systems	radial force N (lbf)	of inertia kgcm^{2} (Psi)	torque Nm (lbf.in)		kg/lb
Shaft extensions Coupled to the axis, these can be used, via a mechanical adapter (not supplied), to	PAS41B	-	$\begin{aligned} & \text { CAS41 } \\ & \text { CAR41 } \\ & \text { CAR42 } \end{aligned}$	MAXH41 MAXS41 MAXP12 MAXR12 MAXR13	$\begin{aligned} & 230 \\ & (51.70) \end{aligned}$	$\begin{aligned} & 0.002 \\ & (0.028) \end{aligned}$	$\begin{aligned} & 7.7 \\ & (68.14) \end{aligned}$	VW33MF1S12A12	$\begin{aligned} & 0.112 \\ & 0.247 \end{aligned}$
connect: An encoder indicating the axis position A third-party	$\begin{aligned} & \text { PAS42B } \\ & \text { PAD42 } \end{aligned}$	-	CAS42 CAR42 CAR43 CAR44	MAXH42 MAXS42 MAXP22 MAXR22 MAXR23	$\begin{aligned} & 400 \\ & (89.92) \end{aligned}$	$\begin{aligned} & 0.05 \\ & (0.71) \end{aligned}$	$\begin{aligned} & 35.7 \\ & \text { (315.93) } \end{aligned}$	VW33MF1S27A20	$\begin{aligned} & 0.152 \\ & 0.335 \end{aligned}$
drive	PAS43B	-	CAS43	MAXH43 MAXS43 MAXP32 MAXR32 MAXR33	$\begin{aligned} & 700 \\ & (157.36) \end{aligned}$	$\begin{aligned} & 0.16 \\ & (2.27) \end{aligned}$	$\begin{aligned} & 82 \\ & (725.66) \end{aligned}$	VW33MF1S32A25	$\begin{aligned} & 0.148 \\ & 0.328 \end{aligned}$
	PAS44B	-	CAS44	MAXH44 MAXS44 MAXP42 MAXR42 MAXR43	$\begin{aligned} & 1,300 \\ & (292.25) \end{aligned}$	$\begin{aligned} & 0.54 \\ & (7.68) \end{aligned}$	$\begin{aligned} & 182 \\ & (1,610.62) \end{aligned}$	VW33MF1S37A32	$\begin{aligned} & 0.311 \\ & 0.685 \end{aligned}$

(1) More technical data for accessories is available on product Data sheet. Click on product reference to open it.

Lexium Cartesian robots
Accessories for Portal axes, Linear tables, Cantilever axes, Multi axes systems

VW32SBCBGA•••

Lubrication accessories (1)							
Description	To combine with				Delivery volume	Reference	Weight kg/lb
	Portal axes	Linear tables	Cantilever axes	Multi axes systems			
Single-hand lubrication gun for oil (2) This is used to lubricate axes with roller guides. Oil capacity: $120 \mathrm{~cm}^{3}$ (7.322 in ${ }^{3}$)	PAS4••R	-	CAS4•BR	MAXH4•BR MAXS4•BR MAXP•2•-•••BR MAXR•2•-•••BR MAXR•3•-•••BR	$\begin{aligned} & 0.5 \mathrm{~cm}^{3}(0.031 \\ & \text { in } \left.^{3}\right) / \text { stroke } \end{aligned}$	VW33MAP22	$\begin{aligned} & 0.563 \\ & 1.241 \end{aligned}$
Single-hand lubrication gun for grease (2) This is used to lubricate axes with ball guides: Suitable for VW33MAC4 cartridge	$\begin{aligned} & \text { PAS4•®B } \\ & \text { PAD42 } \end{aligned}$	TAS4•	CAS4•BB CAS24BB	MAXH4•BB MAXS4•BB MAXP•2•-•••BB MAXR•2•-•••BB MAXR•3•-•••BB	$\begin{aligned} & 0.8 \mathrm{~cm}^{3}(0.049 \\ & \left.i n^{3}\right) / \text { stroke } \end{aligned}$	VW33MAP11C4	$\begin{aligned} & 1.300 \\ & 2.866 \end{aligned}$
Lubricant cartridge for single-hand lubrication gun (grease)	To combine with VW33MAP11C4					VW33MAC4	$\begin{aligned} & 0.400 \\ & 0.881 \end{aligned}$

Sensor extension cables (1)							
Description	To combine with				Length m (ft)	Reference	Weight kg/lb
	Portal axes	Linear tables	Cantilever axes	Multi axes systems			
Extension cables	PAS4•B	TAS4•	CAS4•	MAXH•	5 (16.40)	VW32SBCBGA050	0.219
Cables equipped with a 3-way M8	PAD42 PAS4•S		CAR4• CAS24	MAXS• MAXP• MAXR•			0.482
connector on the sensor end and one stripped end.					10 (32.81)	VW32SBCBGA100	$\begin{aligned} & 0.274 \\ & 0.604 \end{aligned}$
These cables connect directly to the cable supplied with the sensor via the M8 connector.					20 (65.62)	VW32SBCBGA200	$\begin{aligned} & 0.113 \\ & 0.249 \end{aligned}$

Spare parts and Replacement equipments		
Designation	To combine with	For futher information refer to the corresponding hardware guide (click on the link)
Toothed belts and pulleys, Couplings, Cover strips, Sensors and other parts	Portal axes	Lexium PAS, PAD
	Linear tables	Lexium TAS
	Cantilever axes	Lexium CAS, CAR
	Multi axes systems	Lexium MAX

[^7]
Lexium Cartesian robots
 Accessories for Multi axes systems systems

Energy chain（1）

Presentation

Energy chains are developed to help guide and protect moving cables and hoses．They minimize downtime，provide protection and support， and help to extend the service life of the cables and hoses．
Energy chains are used in the MAXP•2，MAXR•2，MAXR•3 products．
The required total length of cable drag chain is calculated as follows：$L=$ stroke $/ 2+K$（mm）
For dimension K，see table dimension drawings．The total length L of the cable drag chain is composed of several sections．Use the formula to calculate the number of pieces to be ordered：
\square Number of sections for series $1400=\mathrm{L} / 500$（round up the result to the nearest integer）
\square Number of sections for series $2400=\mathrm{L} / 460$（round up the result to the nearest integer）
－Number of sections for series $2600=\mathrm{L} / 560$（round up the result to the nearest integer）

References			
Chain type（2）	Chain reference	Chain connector reference	Chain separator reference（4）
E02－1400－038－R075（3）	SPM3MAC1403075	SPM3MAC1403	SPM3MAC14
E02－2400－057－R075	SPM3MAC2405075	SPM3MAC2405	SPM3MAC24
E02－2400－057－R100	SPM3MAC2405100		
E02－2400－057－R125	SPM3MAC2405125		
E02－2400－077－R100	SPM3MAC2407100	SPM3MAC2407	
E02－2400－077－R125	SPM3MAC2407125		
E02－2400－077－R150	SPM3MAC2407150		
E02－2600－075－R100	SPM3MAC2607100	SPM3MAC2607	SPM3MAC26
E02－2600－100－R125	SPM3MAC2610125	SPM3MAC2610	

Dimensions

（1）More technical data for accessories is available on product Data sheet．Click on product reference to open it．
（2）For more information on the cable drag chain types，please refer to the Operating Instructions for the Lexium MAX Series．
（3）Always contains two dividers per link，except for cable drag chain E02－1400－038－R075，where only one divider per chain link is installed．
（4）Each order contains a set of 50 pieces of separators．

C		SPM3MAC2405100	57
CAR40RC	31	SPM3MAC2405125	57
CAR41BC	31	SPM3MAC2407	57
CAR42BC	31	SPM3MAC2407100	57
CAR43BC	31	SPM3MAC2407125	57
CAR44BC	31	SPM3MAC2407150	57
CAS24BB	35	SPM3MAC26	57
CAS41BR	27	SPM3MAC2607	57
CAS42BB	27	SPM3MAC2607100	57
CAS42BR	27	SPM3MAC2610	57
CAS43BB	27	SPM3MAC2610125	57
CAS43BR	27		
CAS44BB	27	T	
		TAS41SBA	23
M		TAS41SBB	23
MAXH41BR	43	TAS41SBC	23
MAXH42BB	43	TAS42SBB	23
MAXH42BR	43	TAS42SBC	23
MAXH43BB	43	TAS42SBD	23
MAXH43BR	43	TAS43SBB	23
MAXH44BB	43	TAS43SBC	23
MAXP12	48	TAS43SBE	23
MAXP22	48	V	
MAXP32	48		
MAXP42	48	VW32SBCBGA050	56
MAXR12	51	vW32SBCBGA100	56
MAXR13	51	VW32SBCBGA200	56
MAXR22	51	VW33MAC4	56
MAXR23	51	VW33MAP11C4	56
MAXR32	51	VW33MAP22	56
MAXR33	51	VW33MC05A05	54
MAXR42	51	VW33MC05A06	54
MAXR43	51	VW33MC05A08	54
MAXS41BR	44	VW33MC05B05	54
MAXS42BB	44	VW33MF010T5N5	54
MAXS42BR	44	VW33MF010T6N6	54
MAXS43BB	44	VW33MF010T8N6	54
MAXS43BR	44	VW33MF010T8N8	54
MAXS44BB	44	VW33MF020LD01	55
		VW33MF020LD02	55
P		VW33MF020LD03	55
PAS41BR	8	VW33MF10511	54
PAS42BB	8	VW33MF10512	54
PAS42BR	8	VW33MF10515	54
PAS42SBB	19	VW33MF10613	54
PAS42SBD	19	VW33MF10814	54
PAS42SBF	19	VW33MF1S12A12	55
PAS43BB	8	VW33MF1S27A20	55
PAS43BR	8	VW33MF1S32A25	55
PAS43SBB	19	VW33MF1S37A32	55
PAS43SBD	19		
PAS43SBG	19		
PAS44BB	8		
PAS44SBB	19		
PAS44SBD	19		
PAS44SBH	19		
S			
SPM3MAC14	57		
SPM3MAC1403	57		
SPM3MAC1403075	57		
SPM3MAC24	57		
SPM3MAC2405	57		
SPM3MAC2405075	57		

Life Is Un \quad Schneider

Learn more about our products at

www.se.com

The information provided in this documentation contains general descriptions and/or technical characteristics of the performance of the products contained herein. This documentation is not intended as a substitute for and is not to be used for determining suitability or reliability of these products for specific user applications. It is the duty of any such user or integrator to perform the appropriate and complete risk analysis, evaluation and testing of the products with respect to the relevant specific application or use thereof. Neither Schneider Electric nor any of its affiliates or subsidiaries shall be responsible or liable for misuse of the information contained herein.

Design: Schneider Electric
Photos: Schneider Electric

Schneider Electric Industries SAS

Head Office
35, rue Joseph Monier - CS 30323
F-92500 Rueil-Malmaison Cedex
France

[^0]: $>$ Find the right Training for your needs on our Global website
 $>$ Locate the training center with the selector tool, using this link

[^1]: (1) Technical data (characteristics, dimensions, etc.) for Lexium PAS4•B portal axes are available on

[^2]: Note: For a PAD42BB or PAD42PB axis without motor, gearbox, or adaptation material: in the type code (see table above), select L or R as character under Mounting options for motor and/or gearbox to define the position of the double coupling or the distance plate.

[^3]: (1) Technical data (characteristics, dimensions, etc.) for Lexium PAS4•S portal axes are available on the product data sheet.

[^4]: (1) Technical data (characteristics, dimensions, etc.) for Lexium TAS4 linear tables are available on the product data sheet.

[^5]: (1) Technical data (characteristics, dimensions, etc.) for Lexium CAS4 cantilever axes are available on

[^6]: (1) More technical data for accessories is available on product Data sheet. Click on product reference to open it.

[^7]: (1) More technical data for accessories is available on product Data sheet. Click on product reference to open it.
 (2) Delivered empty with pipe and nozzle.

